
Integer Overflow Detection with Delayed Runtime Test
Zhen Huang

zhen.huang@depaul.edu
DePaul University

Chicago, Illinois, USA

Xiaowei Yu
xyu43@depaul.edu
DePaul University

Chicago, Illinois, USA

ABSTRACT
Detecting integer overflow vulnerabilities is critical for software se-
curity. Many techniques have been proposed to dynamically detect
integer overflow vulnerabilities by instrumenting integer overflow
tests into target programs. Their major drawback is that they can
produce many false positives. In this paper, we propose an ap-
proach to eliminate the false positives stemming from incorrectly
or not considering the sanitization code in target programs that is
designed by developers to catch integer overflows.

Unlike prior work that performs integer overflow test at arith-
metic operations, our approach delays the test until the locations
where the result of the arithmetic operation is about to be used by
sensitive operations. This approach allows the sanitization code to
filter out integer overflows before our integer overflow tests take
place. As a result, it will not produce false positives for integer
overflows that can be caught by the sanitization code.

We have implemented a prototype and our evaluation shows that
it can effectively detect integer overflow vulnerabilities without
producing false positives.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
vulnerability detection; software vulnerability; integer overflow;
static analysis

ACM Reference Format:
ZhenHuang andXiaowei Yu. 2021. Integer OverflowDetectionwith Delayed
Runtime Test. In The 16th International Conference on Availability, Reliability
and Security (ARES 2021), August 17–20, 2021, Vienna, Austria. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3465481.3465771

1 INTRODUCTION
Integer overflow is one of the most dangerous software weak-
nesses [1, 2]. Integer overflows often give rise to other dangerous
software vulnerabilities such as buffer overflows and NULL-pointer
dereference, which allows attackers to compromise computer sys-
tems or cause denial-of-service. Thus it is crucial to detect integer
overflows in a timely manner.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3465771

1 SIXELSTATUS s i x e l _ encode_body (. . . .) {
2
3 s i z e = y ∗ width ;
4 + i f s i z e > INT_MAX − x) {
5 + / ∗ i n t e g e r o v e r f l ow ∗ /
6 + s t a t u s = SIXEL_BAD_INTEGER_OVERFLOW ;
7 + goto end ;
8 + }
9 p i x = p i x e l s [s i z e + x] ;
10
11 }

Figure 1: The code extracted from the patched CVE-2014-
9629 vulnerability in libsixel, an image library that processes
sixiel images. An integer overflow can occur at line 3. The
sanitization code at line 4–8 was added by developers to de-
tect the integer overflow after the vulnerability was discov-
ered.

For decades, many techniques have been proposed to detect inte-
ger overflows [3, 8, 12–15, 17–20]. These techniques can be roughly
categorized as two types: static and dynamic. Static techniques rely
on static analysis to detect integer overflows [14, 17, 18]. They usu-
ally cause many false positives due to the inherent approximations
adopted by static analysis.

On the contrary, dynamic techniques check integer overflows
at runtime [3, 8, 12, 13, 15, 19, 20]. They monitor the execution of
integer operations that may cause integer overflows by instrument-
ing test to detect integer overflows. Typically they have fewer false
positives than static techniques, at the cost of the runtime overhead
introduced by the monitoring.

One main cause of false positives produced by dynamic tech-
niques is that they fail to take into account existing sanitization code
in target programs that are designed to detect integer overflows
anticipated by developers. As illustrated in Figure 1, An integer
overflow can occur during the calculation of y * width at line 3 but
developers have added santization code at line 4—8 as a patch to
detect such integer overflow.

Most dynamic techniques will instrument a test such as a check
on whether size/width equals y immediately after line 3 to deter-
mine if size is an overflowed value as a result of the multiplication,
because size will be used as the index to access an array at line 9.
If the check fails, the test will determine that an overflow occurred
and report it. However, this will cause a false positive because line
4–8 will catch the integer overflow and will prevent line 9 from
being executed if the integer overflow happened.

Some prior work effectively reduces such false positives by
changing the overflowed result of an arithmetic operation to a
specifically-chosen dirty value and let the dirty value flow through
the execution path until the result is about to be used in a dangerous

https://doi.org/10.1145/3465481.3465771
https://doi.org/10.1145/3465481.3465771

way, and reporting the integer overflow only if the dirty value is
not detected by sanitization code [15]. Unfortunately the approach
is not compatible with certain sanitization code and thus it still
produces false positives.

To address this limitation, our work takes a different approach
by instrumenting the integer overflow test code at the sites where
an overflowed value is going to be used by a sensitive operation, e.g.
as memory allocation size, rather than immediately after integer op-
erations that can cause integer overflows, so that the test code will
be executed after any sanitization code. Because the instrumented
tests are executed after rather than before any sanitization code,
the test code will report an integer overflow only when sensitive
operations are about to use the overflowed value, in case sanitiza-
tion code fails to catch the integer overflow or when there is no
sanitization code. Because the integer overflow test instrumented
immediately before the sensitive operations is the same as the test
that could be instrumented before the arithmetic operation, it has
the same detecting power without having the problem of using a
dirty value to indicate integer overflows.

Using the code in Figure 1 as an example, our approach will
instrument the test code to test the multiplication at line 3 immedi-
ately before line 9. When an integer overflow occurs at line 3, the
instrumented test will only be executed if line 4–8 fails to catch the
integer overflow.

There are two main challenge of our approach: 1) it must guaran-
tee that the test code instrumented before a sensitive operation has
the same effect as the test code instrumented immediately after the
corresponding arithmetic operation; 2) it needs to cover all possible
propagation flows from the arithmetic operation to the sensitive
operation where the result of the arithmetic operation will be used.

For the first challenge, one straightforward solution is to use test
code identical to the test code that can be instrumented right after
an arithmetic operation. But this requires verifying whether all the
variables used by the arithmetic operation stay the same on all the
execution paths between the arithmetic operation and the sensitive
operation. If that is not the case, such test code cannot be used at
the sensitive operation.

On the contrary, our solution always provide such guarantee
by saving a copy of the variables used by the arithmetic operation
immediately before the arithmetic operation and constructs test
code to test on the copy of the variables instead of on the original
variables. This solution guarantees that the test code has identical
effect regardless whether it is executed at the arithmetic operation
or delayed until the sensitive operation.

For the second challenge, our solution uses inter-procedural
static taint analysis to track all the data flows that propagate from
arithmetic operations to sensitive operations.

We have implemented a prototype based on the approach, and
evaluated the prototype on nine vulnerabilities in seven applica-
tions. Our evaluation shows that the approach can successfully
detect real-world integer overflows without producing any false
positives in the presence of sanitization code. The instrumented
test code impose a runtime overhead of 1.75x on the SPEC CPU
2000 benchmarks.

In summary, our main contributions are as follows:

• We present our analysis on two types of integer overflow
propagation: intra-procedural propagation and inter-procedural
propagation.
• We propose an approach to accurately detect integer over-
flow vulnerabilities using delayed test code. This approach
eliminates the false positives caused by the presence of sani-
tization code in target programs.
• We present a prototype implementation of the approach. The
prototype uses static taint analysis to identify arithmetic
operations whose result can be used by sensitive operations,
and instruments test code at sensitive operations to check
whether the operations will use overflowed values.
• Our evaluation on the prototype illustrates the effectiveness
of our approach in detecting real-world integer overflow vul-
nerabilities. The test code instrumented into target programs
does not produce any false positives.

2 PROBLEM DEFINITION
As discussed in prior work [8], the majority of integer overflows is
benign. Many times developers intentionally use integer overflows
for a variety of purposes, such as cryptography, hashing, and low-
overhead floating point emulation. An integer overflow occurs in
an integer operation becomes a vulnerability only when 1) one or
more operands used in the integer operation are derived from user
input, and 2) the result of the integer operation is used in a sensitive
operation such as the size for memory allocation or the length for
memory copy, which will lead to buffer overflows, and the condition
that will trigger assertions, which will lead to denial-of-service.

Our work focuses on integer overflows vulnerabilities. In such
an integer overflow, an arithmetic operation is executed first and
causes an integer overflow. Then the result of the arithmetic opera-
tion, i.e. the overflowed value, is propagated to a sensitive operation.
We make the following definitions in the paper.

• arithmetic operation. an integer addition, subtraction,mul-
tiplication, bitwise left shift, or integer type cast.
• sensitive operation. a memory allocation that has one in-
teger parameter as the allocation size, a memory or string
manipulation that has one integer parameter as the mem-
ory size or string length, or a memory dereference using
a memory address that is a result of a pointer arithmetic
operation.
• def-site of an integer overflow. an arithmetic operation
that causes an integer overflow.
• use-site of an integer overflow. a sensitive operation that
uses the result of an overflowed arithmetic operation.
• sanitization code. the code in a target program that is de-
signed to detect an integer overflow.
• integer overflow test. a test that checks an overflow con-
dition to determine whether an arithmetic operation causes
an integer overflow.

We use the overflow condition listed in Table 1 for our integer
overflow test. For an arithmetic operation, we deem an integer over-
flow occurred if its corresponding overflow condition is evaluated
to be true.

2

Table 1: Overflow condition for integer operations.

Type Arithmetic Operation Overflow Condition
Signed c = a + b (a > 0 ∧ b > 0 ∧ c < a)∨

(a < 0 ∧ b < 0 ∧ c > a)

Unsigned c = a + b c < a

Signed c = a − b (a < 0 ∧ b > 0 ∧ c > 0)∨
(a > 0 ∧ b < 0 ∧ c < 0)

Unsigned c = a − b a < b

Signed c = a ∗ b a , 0 ∧ c/a , b
Unsigned c = a ∗ b a , 0 ∧ c/a , b

c = a ≪ b c ≫ b , a

c = typec (a) a < [min..max] of typec

1 in t Imag ingL i bT i f fDecode (. . . .) {
2
3 + / ∗ o v e r f l ow ch e c k f o r r e a l l o c ∗ /
4 + i f (INT_MAX / row_by t e_ s i z e < t i l e _ l e n g t h) {
5 + s t a t e −>e r r c od e = IMAGING_CODEC_MEMORY ;
6 + return −1;
7 + }
8 s t a t e −>by t e s = row_by t e_ s i z e ∗ t i l e _ l e n g t h ;
9 new_data = r e a l l o c (s t a t e −>bu f f e r , s t a t e −>by t e s) ;
10
11 }

Figure 2: The code extracted from the patched CVE-2020-
5310 vulnerability in an image processing library called li-
bImaging. An integer overflow can occur at line 8.

Our goal is to detect integer overflows that have a use-site, i.e.
integer overflow vulnerabilities, and ignore 1) integer overflows that
will be caught by sanitization code, which we refer to as anticipated
integer overflows [15], and 2) integer overflows that do not have a
use-site, i.e. benign integer overflows.

2.1 Sanitization Code
Sanization code can be classified as precondition test and postcondi-
tion test [8]. A precondition test checks whether an integer overflow
can occur in an arithmetic operation without actually performing
the arithmetic operation. It is often added before the arithmetic
operation. As illustrated in Figure 2, the multiplication at line 8
can cause an integer overflow so developers added the sanitization
code at line 3–7 to detect the integer overflow.

A postcondition test checks whether the result of an arithmetic
operation is deemed to be overflowed. It is always added after
the arithmetic operation. The code in Figure 1 is an example of
postcondition test.

As we will discuss in Section 3, our approach instruments integer
overflow test at the use-site of an integer overflow instead of the
def-site of an integer overflow. Consequently it supports both forms
of sanitization code.

2.2 Propagation of Integer Overflow
The propagation of an integer overflow refers to the data flow of
the result of the integer overflow from the def-site of the integer
overflow to the use-site of the integer overflow. We can categorize

1 char ∗ a t _ b i tm a p _ i n i t (short width , short he i gh t) {
2 short s i z e = width ∗ he i gh t ∗ s i z eo f (char) ;
3 return mal loc (s i z e) ;
4 }
5
6 char ∗ input_pnm_reader (. . . .) {
7 char ∗ bi tmap ;
8 in t xres , y r e s ;
9
10 bi tmap = a t _ b i tm a p _ i n i t ((short) x res , (short) y r e s) ;
11
12 }

Figure 3: An inter-procedural propagation of integer over-
flow in the code adopted from an integer overflow vulnera-
bility, CVE-2017-9156 in autotrace

the propagation into two types: intra-procedural propagation and
inter-procedural propagation.

Intra-procedural propagation refers to the propagation in which
both the def-site and the use-site are within the same function. The
code shown in Figure 1 is a case of intra-procedural propagation in
which the def-site is at line 3 and the use-site is at line 9.

Inter-procedural propagation refers to the propagation in which
the def-site and the use-site are in different functions. An inter-
procedural propagation can involve global variables, pointers, and
function calls.

An example inter-procedural propagation across functions is
presented in Figure 3. The integer overflow can happen at the type
casting from int to short on variable xres and yres at line 10 in
function input_pnm_reader, i.e. the def-site. The overflowed val-
ues in xres and yres are then passed to function at_bitmap_init
as arguments at line 10. At last, the overflowed values are used to
calculate the memory allocation size at line 2, which will be used
by malloc to allocate memory at line 3, i.e. the use-site.

3 DESIGN
We describe our design in this section. It analyzes the source code of
a target program and instruments the program with code to detect
integer overflow vulnerabilities. To be able to bypass anticipated
integer overflows, it delays the integer overflow test code till the
use-site of integer overflows. There are two challenges that it needs
to address:
• Because an integer overflow test is not to be performed right
at the def-site of the integer overflow, it needs to guaran-
tee that the delayed test has the same effect as if it were
performed at the def-site.
• An integer overflow can be propagated from the def-site to
the use-site via inter-procedural propagation. It must be able
to identify inter-procedural propagation.

To address the first challenge, we design our integer overflow
detection mechanism as two components: a test-preparation code
that makes a copy of the value of the variables involved in an
arithmetic operation at the def-site, and a test code that tests the
copied values at the use-site. The test-preparation code is in charge
of allocating memory space to save the values of involved variables,
and copying the values of involved variables into the memory
space. The test code is responsible of performing a check on the

3

overflow condition for the arithmetic operation. As a result, the test-
preparation code and the test code work together to test whether
an integer overflow occurs.

We note that our design requires that the test-preparation code
dominates the test code, so that the test-preparation code always
executes before the test code. Because we instrument the test-
preparation code at the def-site and the test code at the use-site,
this implies that the def-site needs to dominates the use-site.

Our design addresses the second challenge by using interpro-
cedural static taint analysis to identify the pairs of def-site and
use-site that exist in different functions.

The workflow of our design is illustrated in Figure 4. Our ap-
proach first performs static taint analysis on the target program
to gather information on the use-site and def-site of arithmetic
operations that may cause integer overflows. The information on
the use-sites and the def-sites are then used to instrument test
preparation code at the def-site and test code at the use-site.

3.1 Static Taint Analysis
Our static taint analysis is based on program dependency graph,
or PDG, that embodies data dependency and control dependency
information of a program [9]. It consists of two phases: 1) an intra-
procedural analysis that identifies def-site and use-site within a
same function and 2) an inter-procedural analysis that tracks the
propagation across functions.

The intra-procedural analysis takes a PDG of a function as input
and outputs a list of pairs of use-site and corresponding def-site
for the function. For each function in a target program, the intra-
procedural analysis first identifies all the arithmetic operations
in it. Then it checks whether any sensitive operations invoked in
the function is dependent on each arithmetic operation. If so, it
identifies the arithmetic operation as a def-site and the sensitive
operation dependent on it as a use-site corresponding to the def-site.
Lastly it verifies that the def-site dominates the use-site. If that is
not the case, it does not consider this pair of def-site and use-site
for test instrumentation.

The inter-procedural analysis takes the list of pairs of use-site
and def-site produced by the intra-procedural analysis, and appends
pairs of def-site and use-site that can be reached across functions
into the list.

For each use-site for a function, it finds the list of function calls
that are dependent on the use-site. And it iterates the callees in the
list of function calls and checks whether any sensitive operations
in the callee is dependent on the parameters of the callee. If so, it
considers the sensitive operation in the callee function as a def-site
for the use-site in the caller function.

The result of our static taint analysis is a list of pairs of use-site
and def-site for a target program.

3.2 Instrumenting Test-Preparation Code
For each integer overflow test, our approach needs to generate and
instruments its corresponding test-preparation code. The instru-
menting of test-preparation code iterates each pair of use-site and
def-site in the list of pairs of use-site and def-site produced by the
static taint analysis. It produces the code that allocates memory for
saving a copy of the value for each variable on which the arithmetic

operation corresponding to a def-site depends, as well as a copy
of the result of the arithmetic operation, and the code to make a
copy of the value for these variables and the value of the result.
If the use-site is propagated from the def-site via intra-procedural
propagation, it produces code to allocate local variables to save the
copy of values. If the use-site is propagated from the def-site via
inter-procedural propagation, it produces code to allocate global
variables to save the copy of values.

To illustrate the test-preparation code, Figure 5 shows the code
of our running example instrumented with test-preparation code,
which consists of line 2, 4, 5, and 7. Line 2 allocates the memory
for test-preparation. Line 4-5 saves a copy of the value of variable
y and width on which the def-site at line 6 depends. Line 7 saves a
copy of the result of the def-site.

The instrumenting of test-preparation code not only instruments
test-preparation code into the target program, but also produces
the information needed to instrument the test code, including the
memory location allocated to save variable copies for each def-site.

3.3 Instrumenting Test Code
Our approach instruments test code at each use-site of the list of
pairs of use-site and corresponding def-site generated from the
static taint analysis.

For each use-site, it produces the code to check the overflow
condition for the type of arithmetic operation of the corresponding
def-site based on Table 1. It uses the mapping between the variables
on which a def-site depends and the variables saving the copy of
their values to generate code for the test. As illustrated in Figure 5,
line 13 and 14 are the instrumented test code.

4 EVALUATION
We implement our prototype as an analysis pass of LLVM [16]. It
works with C/C++ programs that can be compiled into LLVM bit-
code. The prototype instruments integer overflow tests into target
programs in the form of LLVM IR code.

We evaluate the accuracy of our prototype on real-world integer
overflow vulnerabilities and the performance of our prototype on
SPECINT 2000 benchmarks. All our experiments are conducted on
a Intel i7-7700 3.60GHZ CPU workstation with 16GB memory. The
workstation runs 64bit Ubuntu 16.04

We run the prototype on real world integer vulnerabilities and
verify whether our prototype can detect the vulnerabilities without
producing false positives.

4.1 Detecting Integer Overflow Vulnerability
We use real world integer overflow vulnerabilities to evaluate our
prototype’s capability in vulnerability detection. We randomly
choose nine integer overflow vulnerabilities from five different
types of programs, including IRC server, OCR tool, programming
language interpreter, and image processing library, as listed in Ta-
ble 2.

For each program, we run our prototype to instrument integer
overflow tests. The prototype successfully instruments integer over-
flow tests for all but one vulnerabilities. It is unable to track the data
flow from the def-site to the use-site for CVE-2016-5094 because the
value produced at the def-site is passed to the use-site via a function

4

Instrumenting
Test-preparation

Code

Instrumenting
Test Code

Use-site
Information

Def-site
Information

Static Taint
Analysis

Instrumented
Target
Program

Target
Program

Figure 4: Workflow of Our Approach

1 SIXELSTATUS s i x e l _ encode_body (. . . .) {
2 + in t y_copy , width_copy , s i z e _ copy ;
3
4 + y_copy = y ;
5 + width_copy = width ;
6 s i z e = y ∗ width ;
7 + s i z e _ copy = s i z e ;
8 i f s i z e > INT_MAX − x) {
9 / ∗ i n t e g e r o v e r f l ow ∗ /
10 s t a t u s = SIXEL_BAD_INTEGER_OVERFLOW ;
11 goto end ;
12 }
13 + i f (y_copy != 0 && s i z e _ copy / y_copy != width_copy)
14 + r e p o r t _ i n t e g e r _ o v e r f l ow () ;
15 p i x = p i x e l s [s i z e + x] ;
16
17 }

Figure 5: The code instrumented with integer overflow test
for the patched CVE-2014-9629 vulnerability in libsixel. The
lines prefixed with ’+’ is instrumented code.

argument that is a pointer to a struct field, which is not identified
by the static taint analysis. For the instrumented programs, we
run the exploits for the vulnerabilities and check whether the in-
strumented tests can detect the exploits. Our results show that the
vulnerabilities are effectively detected by the instrumented tests.

4.2 Bypassing Anticipated Integer Overflow
To evaluate our prototype’s capability in bypassing anticipated inte-
ger overflows, we conduct vulnerability detection on the programs
that are patched for the vulnerabilities in Table 2.

First, we run the exploits to verify that the vulnerabilities can no
longer be triggered in the patched programs. Second, we instrument
integer overflow tests for the vulnerabilities and re-run the exploits.
This time we check whether our tests still report integer overflows.

We find that the tests instrumented by our prototype success-
fully bypass all the anticipated integer overflows. As a result, our
approach produces no false positives for these vulnerabilities.

4.3 Test Density
We evaluate the density of instrumented integer overflow tests on
SPECINT 2000 benchmarks. As shown in Table 3, all the instructions
refer to LLVM instructions. On average, 4.73% of instructions are
integer arithmetic operations and 1.25% of them are chosen by our
prototype to instrument integer overflow tests.

Table 2: Detecting Integer Overflow Vulnerabilities.

CVE# App. Def-Site Use-Site Detected?
2005-0199 ngircd a − b string copy Y
2005-1141 gocr a ∗ b memory Y

allocation
2006-4812 php typec (a) memory Y

allocation
2016-5094 php typec (a) memory N/A

dereference
2019-11072 lighttpd a − b string copy Y
2019-13109 exiv2 a − b data copy Y
2019-13110 exiv2 a + b memory Y

dereference
2019-19746 fig2dev a ∗ b memory Y

dereference
2019-20205 libsixel a ∗ b memory Y

allocation

Table 3: Test Density: #I: number of instructions; #A: num-
ber of arithmetic operations; #S: number of sensitive oper-
ations; #T: number of instrumented integer overflow tests;
Density is defined as #T / #A.

Benchmark #I #A #A/#I #S #T Density
164.gzip 11,604 954 8.22% 6 17 1.78%
175.vpr 38,647 1,249 3.23% 17 7 0.56%
181.mcf 5,979 151 2.53% 5 2 1.32%
186.crafty 45,428 2,748 6.05% 96 16 0.58%
197.parser 31,210 849 2.72% 17 18 2.12%
254.gap 197,099 9,405 4.77% 2 0 0
256.bzip2 9,100 676 7.43% 10 16 2.37%
Average 48,438 2,291 4.73% 22 11 1.25%

4.4 Runtime Overhead
To measure the runtime overhead, we ran SPECINT 2000 bench-
marks with the ref dataset. Figure 6 presents the runtime overhead.
The instrumented benchmarks run 1.75x slower than the original
benchmarks on average. We believe the high overhead is mainly
caused by the use of function calls in instrumented test code.

5 LIMITATIONS
The static taint analysis used by our prototype does not track the
taint propagation via struct fields accessed using function parame-
ters that are struct pointers. As a result, the prototype is unable to
identify this type of data propagation from def-sites to use-sites.

5

Figure 6: Runtime Overhead

Our approach requires that a def-site dominates its correspond-
ing use-site. One way to loosen the requirement is to create pseudo
test preparation code at other program paths leading to the use-site.

Because our prototype instruments test code that will make func-
tion calls to perform integer overflow test, the runtime overhead is
high. We plan to inline test code to reduce the runtime overhead.

6 RELATEDWORK
A large body of work has been proposed to detect or fix vulnerabil-
ities [4–7, 10–12, 15, 17–20]. We focus on those detecting integer
overflow vulnerabilities. IntScope performs symbolic execution and
taint analysis on binaries to detect the program paths that can
propagate integer overflows into exploitable vulnerabilities [17].

IntPatch automatically fixes Integer Overflow to Buffer Overflow
vulnerabilities in C/C++ programs at compile time [19]. It utilizes
type theory and static dataflow analysis to identify potential vulner-
abilities and then instruments runtime checks on integer overflows.
Instead of using static analysis, IntTracker adopts dynamic tracking
technique to reduce false positive in detecting IO2BO vulnerabilities
in C/C++ programs.

7 CONCLUSION
We present the design and implementation of our approach to de-
tecting integer overflow vulnerabilities without producing common
false positives caused by the presence of sanitization code in target
programs. The approach eliminates such false positives by delaying
integer overflow tests at the location where the result of integer
overflows is to be used in sensitive operations. We test our proto-
type on real-world integer overflow vulnerabilities and find that it
successfully detects the vulnerabilities without false positives.

REFERENCES
[1] 2019. 2019 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.

mitre.org/top25/archive/2019/2019_cwe_top25.html. (2019).

[2] 2020. 2020 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.
mitre.org/top25/archive/2020/2020_cwe_top25.html. (2020).

[3] David Brumley, T Chiueh, R Johnson, and H Lin. 2007. RICH: Automatically
protecting against integer-based vulnerabilities. In Ndss ’07. http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.73.7344

[4] David Brumley, Tzi cker Chiueh, and Robert Johnson. 2007. RICH: Automati-
cally Protecting Against Integer-Based Vulnerabilities. In Proceedings of NDSS
Symposium 2007. NDSS, New York, NY, USA.

[5] Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, and Jiaguang Sun. 2017. IntPTI:
Automatic integer error repair with proper-type inference. In ASE 2017 - Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. 996–1001. https://doi.org/10.1109/ASE.2017.8115718

[6] Zack Coker andMunawar Hafiz. 2013. Program Transformations to Fix C Integers.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). IEEE Press, 792âĂŞ801.

[7] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding Integer
Overflow in C/C++. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, 760âĂŞ770.

[8] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Understanding integer
overflow in C/C++. In the 34th International Conference on Software Engineering,
Vol. 25. https://doi.org/10.1145/2743019

[9] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319âĂŞ349. https://doi.org/10.1145/24039.24041

[10] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. 2014.
Sound Input Filter Generation for Integer Overflow Errors. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’14). ACM, New York, NY, USA, 439–452. https://doi.org/10.1145/2535838.
2535888

[11] DavidMolnar, Xue Cong Li, and David A.Wagner. 2009. Dynamic Test Generation
to Find Integer Bugs in X86 Binary Linux Programs. In Proceedings of the 18th
Conference on USENIX Security Symposium (SSYM’09). USENIX Association, USA,
67âĂŞ82.

[12] Raphael Ernani Rodrigues, Victor Hugo Sperle Campos, and Fernando Magno
Quintao Pereira. 2013. A fast and low-overhead technique to secure programs
against integer overflows. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2013. https://doi.org/10.
1109/CGO.2013.6494996

[13] Julian Schütte. 2016. Osiris : Hunting for Integer Bugs in Ethereum Smart
Contracts, Vol. D. 664–676.

[14] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rittenhouse, Paolo Piselli, Fan
Long, Deokhwan Kim, and C. Martin Rinard. 2015. Targeted Automatic Inte-
ger Overflow Discovery Using Goal-Directed Conditional Branch Enforcement.
ASPLOS (2015), 473–486.

[15] Hao Sun, Xiangyu Zhang, Chao Su, and Qingkai Zeng. 2015. Efficient Dynamic
Tracking Technique for Detecting Integer-Overflow-to-Buffer-Overflow Vulnera-
bility. In Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS âĂŹ15). Association for Computing Machin-
ery, New York, NY, USA, 483âĂŞ494. https://doi.org/10.1145/2714576.2714605

[16] The LLVM Compiler Infrastructure 2018. http://llvm.org/. (2018).
[17] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. 2009. IntScope: Automatically

Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic Execu-
tion.. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2009. The Internet Society. http://dblp.uni-trier.de/db/conf/ndss/ndss2009.
html#WangWLZ09

[18] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
2012. Improving Integer Security for Systems with KINT. In 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12). USENIX As-
sociation, Hollywood, CA, 163–177. https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/wang

[19] Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch:
Automatically Fix Integer-Overflow-to-Buffer-OverflowVulnerability at Compile-
Time. In Computer Security – ESORICS 2010, Dimitris Gritzalis, Bart Preneel, and
Marianthi Theoharidou (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
71–86.

[20] Yang Zhang, Xiaoshan Sun, Yi Deng, Liang Cheng, Shuke Zeng, Yu Fu, and
Dengguo Feng. 2015. Improving Accuracy of Static Integer Overflow Detection
in Binary. In Research in Attacks, Intrusions, and Defenses, Herbert Bos, Fabian
Monrose, and Gregory Blanc (Eds.). Springer International Publishing, Cham,
247–269.

6

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7344
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7344
https://doi.org/10.1109/ASE.2017.8115718
https://doi.org/10.1145/2743019
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/2535838.2535888
https://doi.org/10.1145/2535838.2535888
https://doi.org/10.1109/CGO.2013.6494996
https://doi.org/10.1109/CGO.2013.6494996
https://doi.org/10.1145/2714576.2714605
http://llvm.org/
http://dblp.uni-trier.de/db/conf/ndss/ndss2009.html#WangWLZ09
http://dblp.uni-trier.de/db/conf/ndss/ndss2009.html#WangWLZ09
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wang
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wang

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Sanitization Code
	2.2 Propagation of Integer Overflow

	3 Design
	3.1 Static Taint Analysis
	3.2 Instrumenting Test-Preparation Code
	3.3 Instrumenting Test Code

	4 Evaluation
	4.1 Detecting Integer Overflow Vulnerability
	4.2 Bypassing Anticipated Integer Overflow
	4.3 Test Density
	4.4 Runtime Overhead

	5 Limitations
	6 Related Work
	7 Conclusion
	References

