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As software vulnerabilities remain prevalent, automatically detecting software vulnerabilities is crucial for software security. Recently
neural networks have been shown to be a promising tool in detecting software vulnerabilities. In this paper, we use neural networks
trained with program slices, which extract the syntax and semantic characteristics of the source code of programs, to detect software
vulnerabilities in C/C++ programs. To achieve a strong prediction model, we combine different types of program slices and optimize
different types of neural networks. Our result shows that combining different types of characteristics of source code and using a
balanced ratio of vulnerable program slices and non-vulnerable program slices a balanced accuracy in predicting both vulnerable code
and non-vulnerable code. Among different neural networks, BGRU performs the best in detecting software vulnerabilities with an
accuracy of 94.89%.
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1 INTRODUCTION

Software vulnerabilities is a severe threat to network and information security. As hackers and malware frequently
exploit software vulnerabilities to compromise computer systems, popular software vendors offer as much as $1 million
dollars reward to individuals who report software vulnerabilities [1–4].

For decades, a large number of studies have been contributed to detecting vulnerabilities at the source code level [6,
8, 12, 16, 23, 25]. Mainly they are based on code similarity detection or pattern matching. Unfortunately code similarity
detection is not well-suited for detecting vulnerabilities not caused by code cloning, while pattern matching requires
human experts to define patterns that represent vulnerabilities.

To address these limitations, neural networks have been used recently to detect vulnerabilities [7, 10, 18, 20, 21, 26]. The
neural networks have been widely used in image processing and speech recognition as it can provide the high accuracy
rate of prediction while insignificantly relying on human experts in feature extraction. As software vulnerabilities can
be caused by a wide range of reasons, the neural networks can be served as a useful tool in detecting vulnerabilities.
Unlike pattern-based methods, the neural network eliminates influence of human bias in feature extractions.
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Amain focus of this paper is to develop a strong predictive model using neural networks for detecting the vulnerability
of C/C++ programs automatically. Unlike previous work that generates individual models from different types of
characteristics extracted from the source code of the programs [13], we build the model on a dataset that combines
different types of characteristics extracted from source code. We find that the model built from the combined dataset
outperforms the individual models fitted with individual dataset.

To develop a strong predictive model, we optimize the neural networks with different hyperparameters such as
optimizer, gating mechanism, and activation functions in our model development. Our results show that the BGRU
model’s accuracy rate is as high as 94.6% for a training set and 92.4% for a test set.

The major contributions of this paper is as follows:

• We show that the accuracy of the model built on the combined dataset of program slices surpasses the models
built on individual dataset.

• By balancing the ratio of vulnerable program slices (class 1) and non-vulnerable program slices (class 0), the
model performs well with a high balanced accuracy rate of 93% which is comparable to that of a training set.
The high sensitivity and specificity imply the model has a good ability in explaining both vulnerability and
non-vulnerability classes.

• We compare different types of neural networks and show that BGRU performs the best.
• The model built with BGRU achieves an accuracy rate of 94.89% by utilizing 10X more program slices.
• We have implemented a chain of tools for generating the model from program slices and open sourced the tools
at https://gitlab.com/vulnerability_analysis/vulnerability_detection/.

2 BACKGROUND

We use the dataset of C/C++ programs collected by Zhen Li, et al. [13]. It contains 1,592 programs from the National
Vulnerability Database (NVD) and 14,000 programs from the Software Assurance Reference Dataset (SARD). The
programs were pre-processed and transformed to 420,627 slices called semantic vulnerability candidates (SeVC) which
include 56,395 vulnerable slices (13.5 % of total slices) and 364,232 non-vulnerable slices (86.5 % of total slices).

The slices of programs were divided into the following four main types regarding the vulnerability syntax analysis
obtained from Checkmarx:

• Library or API Function Call (FC). This vulnerability type is associated with library or API functions calls in
program which contain 811 C/C++ library/API function calls. This type represents 15.3% of total sample slices,
comprising 13,603 vulnerable slices and 50,800 non-vulnerable slices.

• Array Usage (AU). This vulnerability is related to the use of arrays such as improper uses of array element
access, array, and arithmetic, accounting for 10% of total slices which contains 10,926 vulnerable slices and 31,303
non-vulnerable slices.

• Pointer Usage (PU). This vulnerability type is correlated to inappropriate uses of pointer arithmetic and
references which are a main type of sample slices comprising 69.4% of total slices which includes 28,391 vulnerable
slices and 263,450 non-vulnerable slices.

• Arithmetic Expression (AE). This vulnerability type is related to improper arithmetic expressions such as
integer overflowwhich represents 5.3% of total slices, comprising 3,475 vulnerable slices and 18,679 non-vulnerable
slices.
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2.1 Generating Program Slices

The program slices are generated in a two-phase process. First, Syntax-based Vulnerability Candidates (SyVCs) are
extracted from Program Dependency Graph for each function of the C/C++ programs. Each SyVC embodies syntax
characteristics of a vulnerability. Second, Semantics-based Vulnerability Candidates (SeVCs) are produced from SyVCs.
Each SeVC extends a SyVC with data dependency and control dependency information. The process is illustrated in
Figure 1. More details on program slice generation can be found in [13].

Source Code Syntax
 (SyVC)

Semantic
(SeVC)

Slices

Fig. 1. Generating Program Slices fro Source Code.

2.2 Transforming Program Slices into Vectors

The program slices are then transformed into vectors to feed into neural networks. Each slice was transformed to an
array of tokens in which all comments and white spaces were also removed before transformation and tokens were
mapped with list of function names.

For each slice, the tokenized outputs were stored in pickle file and labeled with the unique sample ID (no duplicated
ID). Each pickle file contains an array of 5 elements including a list of tokens, a target label (0/1), list of functions,
vulnerability type, and sample ID with a main function name.

The tokens from each pickle file were converted to vectors using Word2Vector model built from Gensim package.
The Word2Vector model converted tokens to vector based on cosine similarity distance which measures the angle
between vectors in which the high similarity score indicates high similarity and a closer distance between tokens [15].
The cosine similarity is computed as follows:

𝑠𝑖𝑚(𝑋,𝑌 ) = 𝑋 · 𝑌

∥𝑋 ∥ × ∥𝑌 ∥ =
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×
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2
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The visualization of words in Word2Vector model is shown in Figure 2. As we can see, different program slice types
have extremely different distributions of cosine similarities. This indicate that different program slice types convey
different characteristics of vulnerabilities.

3 MODEL OPTIMIZATION

3.1 Balancing Datasets

The training set should have a balanced number of non-vulnerable program slices and vulnerable program slices to
ensure that the model can produce unbiased predictions. However, [13] used an imbalanced dataset in which non-
vulnerable program slices only accounts for 15.6% of total program slices while vulnerable program slices accounts for
84.4% of total program slices.
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   Function Calls             Array Usage      Pointer Usage         Arithmetic Expression

Fig. 2. Visualized Words in W2V model for Each Vulnerability Type

To illustrate the issue, we compute the confusion matrix for the model fitted with imbalanced class sample (75% of
class 0 and 25% of class 1). The result is presented in Table 1. The model has considerably more ability to predict class 0
as its specificity and negative prediction are significantly higher than its sensitivity and precision, respectively. Thus,
the accuracy rate is biased towards class 0.

Table 1. Confusion Matrix for Imbalanced Dataset

Predicted Class
Positive Negative Rate

Positive 8.0 48.0 0.14285 Sensitivity
Negative 14.0 130.0 0.90277 Specificity

0.36363 0.73033 0.60999 Accuracy
Precision Negprediction

In order to solve an imbalanced class issue, a training set was re-sampled using down-sampling method to randomly
extract samples from a majority class (label 0) from a training set. The new sample set has a balanced class label,
comprising 50% vulnerable vector arrays and 50% non-vulnerable vector arrays.

The process of down-sampling is shown in Figure 3. In the last step, all vector arrays for each slice program are
adjusted to have a same length (same number of rows) as each array of vectors have different number of rows, but the
neural networks required all vector input to have a same dimension (same number of columns and same number of
rows). The mean of vector lengths for all slice programs was calculated and use as the threshold to adjust the vector
lengths. If an array of vectors has a shorter length than the mean, it will embed with the zero array. For the array of
vectors with longer length than the mean length, the vectors were truncated.

With the balanced dataset, we can see that the model has approximately same ability to predict class 0 and class 1, as
shown in Table 2. This shows that balancing the dataset is crucial for the model to have balanced prediction power for
both classes.

3.2 Combining Datasets

In previous work [13], different models are built using different program slice types. From the visualization of
Word2Vector models for each program slice type, presented in Figure 2, we note that different program slice types
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Fig. 3. Down-sampling and Vector Adjustment

Table 2. Confusion Matrix for Balanced Dataset

Predicted Class
Positive Negative Rate

Positive 1186.0 167.0 0.87916 Sensitivity
Negative 672.0 4018.0 0.86408 Specificity

0.65236 0.96108 0.86747 Accuracy
Precision Negprediction

capture different characteristics of vulnerabilities, so we explore the use of a dataset combined from all different program
slice types.

We perform a preliminary study using 1,000 randomly sampled program slices from each individual program slice
types and 1,000 randomly sampled program slices among different program slice types, i.e. combined dataset. We
compare the accuracy, sensitivity, and specificity for the models built using the sampled program slices from individual
program slice types and the model built using the sampled program slices from the combined dataset. Our result is
shown in Table 3.

Table 3. Comparison between individual datasets and combined dataset

Type Accuracy Sensitivity Specificity
API 53% 69% 46%
AU 64% 79% 62%
PU 38% 83% 31%
AE 61% 61% 62%

COMBINED 61% 91% 53%

The model fitted with the combined data types outperform all models fitted with individual datasets in explaining
the target class 1 (vulnerable) as the sensitivity is as high as 91%. Compared to API and PU models, the combined model
performs better in detecting the target class 0 (non-vulnerable). The overall performance indicates that the combined
model performs similarly to AU and AE models. The combined dataset is more appropriate for predicting vulnerabilities.
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4 EVALUATION

4.1 Optimizers

There are several optimizers that can be applied to optimize neural network such as Stochastic Gradient Descent (SGD)
by default, Adamax (SySe Paper), RMS Prop, and Adam.

Adam optimizer is a combination of RMSprop and SGD with momentum, which is an adaptive learning rate method
and computationally efficient as it computes individual learning rates for different parameters.

According to Kingma et al. [9], ADAMmethod is appropriate for problems with large dataset and/or parameters, with
non-stationary objectives, and for problems with very noisy and/or sparse gradients. ADAM optimizer will improve
our neural network when a network has weak signals which is not sufficient to tune its weights effectively. Given the
nature of software vulnerabilities which contain various causes, the ADAM method is an appropriate method to further
examine and apply towards the model development in this paper.

We explore three different optimizers, ADAMAX, SGD, and ADAM, in order to find the best optimizer for our neural
networks. The summary of models with ADAMAX and SGD optimizer is presented in Table 4.

We can see that the ADAM optimizer performs the best among the three optimizers for all program slice types.
ADAM achieves an average accuracy rate of 90.0%. This is approximately 5% more than the accuracy rate of ADAMAX,
which is used in previous work [13].

Table 4. Accuracy Rate with Different Optimizers

Type ADAMAX SGD ADAM
API 86.7% 63.1% 89.5%
AU 86.0% 58.6% 89.2%
PU 82.4% 62.3% 90.9%
AE 83.1% 67.1% 90.5%

4.2 BGRU v.s. BLSTM

In this section, we compare the performance of different neural networks with a focus on BGRU and BLSTM.
Comparing to LSTM, GRU has no explicit memory unit and no forget gate and update gate, hence it trains the model

faster than LSTM, but may lead to a lower accuracy rate. GRU also has a simpler architecture which reduces the number
of hyperparameters. LSTM comprises both update gate and forget gate and remembers longer sequences than GRU.
However, LSTM is found to be comparable to GRU on sequence modeling.

Bidirectional Recurrent Neural Networks provides the original input sequence to the first layer and a reversed copy
of the input sequence to the second layer, so there are two layers side-by-side. Bidirectional RNNs are found to be more
effective than regular RNNs. It has been widely used as it can overcome the limitations of a regular RNN [17]. The
regular RNN model preserves only information of the past. Whereas, These Bidirectional networks have access to the
past as well as the future information; therefore, the output is generated from both the past and future context and
leads to a better prediction and classifying sequential patterns. The output from fitting LSTM and BLSTM models also
indicates that the bidirectional unit outperforms the regular LSTM holding other hyperparameters constant, as shown
in Figure 4.

The BLSTM model has lower loss rate of 0.58 compared to a loss rate of 0.60 from LSTM. The BLSTM also have
a higher accuracy rate of 64.2% than that of LSTM model of 62.8%. Note that both models were fit with same input
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Fig. 4. Model Fitting of BLSTM and LSTM

parameter and dataset. The models were built with a small dataset of 1000 slices so the accuracy rate may not be high.
The larger dataset would be used to fit the model in the later section.

The confusions matrix provides more details for model performance and validation of the models trained with
4,000 samples (80% of 5,000 samples) in Figure 5. The decision threshold is set to 0.5 for validation. The BGRU model
outperforms the BLSTM in most metrics except the sensitivity. It has a higher accuracy, precision, and specificity which
indicates the stronger ability of model to predict both vulnerability and non-vulnerability types.

BGRU BLSTM

Fig. 5. Confusion Matrix for BGRU and BLSTM (fitted with 1,000 samples)

For a larger dataset of 30,000, the BGRU also outperforms BLSTM in every metrics. The obvious improvement is the
sensitivity which the BGRU has 90% of sensitivity which is 8% higher than that of BLSTM, indicating that the BGRU
model can explain the vulnerability class better than the BLSTM, as shown in Figure 6. The model built from 100,000
datasets also shows the similar performance in which BGRU model performs better than BLSTM. Comparing to BLSTM,
The BGRU network typically train, converge, and learn faster. Thus, the BLSTM models that fit with 10 epochs may not
reach convergent which can explain why the models for BGRU perform better in 10 epochs.

4.3 Combined Datasets

We combine the total 420,067 programs slices into one dataset, comprising 64,403, 42,229, 291,281, and 22,154 from API,
AU, PU, and AE types, respectively. The combined dataset was spitted into a training set and a test set with 80/20 ratios.
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Fig. 6. Confusion Matrix for BGRU and BLSTM (fitted with 30,000 samples)

Then, the training set is down-sampling to ensure that the target classes (vulnerable and non-vulnerable) in dataset are
balanced.

The model is built with ADAM optimizer. The hyperparameters of include Bidirectional gated recurrent unit (BGRU)
of 256 neuron units with 2 hidden layers. Tanh function was applied to produce the outputs of 2 hidden layers and
sigmoid function was applied to compute activation outputs in the last layer. The learning rate is 0.1 with batch size
of 32, vector inputs of shape [mean vector lengths x 30]. The cross-entropy loss was chosen as it can speed up the
convergence of loss.

We present the learning process in Figure 7, the learning process is faster in the beginning as the loss rates significantly
decrease in epoch 1 to 3. The accuracy rates increase for as the training process goes from epoch 1 to 10. The model
has the highest accuracy rate of 94.89% in epoch 9 and starts to decrease in epoch 10 as the error rate has no longer
minimized. The network outputs range between 0 and 1 as a sigmoid function is applied the output layer.

Fig. 7. Model Fitting with a Training Set
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Table 5 shows the confusion matrix on the test set. We can see that the model performs well to explain both target
classes as the sensitivity and specificity are over 90%. However, the F1 score was further computed in the next section
to blend the precision and sensitivity.

Table 5. Confusion Matrix for Test Set

Predicted Class
Positive Negative Rate

Positive 10768.0 439.0 0.96082 Sensitivity
Negative 5898.0 67019.0 0.91911 Specificity

0.64610 0.99349 0.92467 Accuracy
Precision Negprediction

As presented in Figure 8, the F1 scores increase while balanced accuracy decreases as the threshold increases. The
peak point of balanced accuracy is at 0.5. F1 is utilized to blend precision and specificity for model evaluation. The
accuracy rate keeps increasing, hence balanced accuracy is more accurate as accuracy is biased with the increasing
threshold.

Fig. 8. F1 v.s. Accuracy Rate for Different Thresholds

Overall, the model fitted with full dataset performs well with a high balanced accuracy rate of 93%. The high
sensitivity and specificity imply a good ability of model in explaining both vulnerability and non-vulnerability classes.
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The model performs better in predicting non-vulnerability class as it has 99% in negative prediction. However, the
predictive power for vulnerability class is still moderately strong as the F1 ranges between 75% to 80% across different
thresholds.

5 RELATEDWORK

Many techniques have been proposed to detect vulnerabilities in the source code using various human-defined features
such as source code text features [5], complexity, code churn, and developer activity metrics [19], abstract syntax
trees [24], function imports and function calls [16]. The main drawback of these techniques is that they requires
considerable human effort to define these features.

Recent techniques use deep learning on the source code of programs to detect vulnerabilities so that no human
experts is needed to define features [11, 13, 14, 27]. They either rely on one type of training data or use imbalanced
training data. Our work differs from them by using a balanced dataset combined from different types of training data.

Rather than using static information collected from the source code, some techniques apply machine learning on
dynamic information collected from the sequences of function calls to detect vulnerabilities [6, 22]. Particularly deep
learning models have been shown to have better accuracy than traditional machine learning models [22].

6 CONCLUSION

We present a study on using neural networks for detecting software vulnerabilities in this paper. The neural networks
are trained with program slices extracted from the source code of 14,000 C/C++ programs. We compare different types
of training data and different types of neural networks. Our result shows that the model combining different types
of characteristics of source code surpasses models based on individual type of characteristics of source code. Using
a balanced number of vulnerable program slices and non-vulnerable program slices ensures a balanced accuracy in
predicting both vulnerable code and non-vulnerable code. We find that BGRU performs the best among other neural
networks. Its accuracy reaches 94.89% with a sensitivity of 96% and a specificity of 91%.
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