
Multiclass Classification of Software Vulnerabilities with Deep
Learning

Crystal Contreras∗
Amazon.com, Inc.

East Palo Alto, California, USA
cryacon@amazon.com

Hristina Dokic
DePaul University

Chicago, Illinois, USA
hdjokic@depaul.edu

Zhen Huang
DePaul University

Chicago, Illinois, USA
zhen.huang@depaul.edu

Daniela Stan Raicu
DePaul University

Chicago, Illinois, USA
draicu@cdm.depaul.edu

Jacob Furst
DePaul University

Chicago, Illinois, USA
jfurst@cdm.depaul.edu

Roselyne Tchoua
DePaul University

Chicago, Illinois, USA
rtchoua@depaul.edu

ABSTRACT
Detecting software vulnerabilities has been a challenge for decades.
Many techniques have been developed to detect vulnerabilities by
reporting whether a vulnerability exists in the code of software. But
few of them have the capability to categorize the types of detected
vulnerabilities, which is crucial for human developers or other tools
to analyze and address vulnerabilities. In this paper, we present our
work on identifying the types of vulnerabilities using deep learning.
Our data consists of code slices parsed in a manner that captures
the syntax and semantics of a vulnerability, sourced from prior
work. We train deep neural networks on these features to perform
multiclass classification of software vulnerabilities in the dataset.
Our experiments show that our models can effectively identify the
vulnerability classes of the vulnerable functions in our dataset.

KEYWORDS
Vulnerability classification, software and application security, ma-
chine learning, deep learning, neural networks

ACM Reference Format:
Crystal Contreras, Hristina Dokic, Zhen Huang, Daniela Stan Raicu, Jacob
Furst, and Roselyne Tchoua. 2023. Multiclass Classification of Software
Vulnerabilities with Deep Learning. In 2023 15th International Conference
on Machine Learning and Computing (ICMLC 2023), February 17–20, 2023,
Zhuhai, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3587716.3587738

1 INTRODUCTION
Software security is severely impacted by vulnerabilities, which are
frequently exploited by attackers for various malicious purposes
such as compromising computers systems, gaining monetary bene-
fits, or causing damages. Over the years, many real-world attacks

∗This work was done when the author was a graduate student at DePaul University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICMLC 2023, February 17–20, 2023, Zhuhai, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9841-1/23/02. . . $15.00
https://doi.org/10.1145/3587716.3587738

took advantage of vulnerabilities. Some prominent incidents in-
clude the breach of private data of 533 million Facebook users [1]
and the Lockfile ransomware [26] in 2021, Russian’s attack on U.S
Federal agencies in 2020 [35], and the WannaCry ransomware [2]
in 2017.

Despite decades’ effort to address vulnerabilities [7, 8, 13, 15–
17, 20, 31, 36–39], they are still ubiquitous. From 2019 to 2021, over
17,000 software vulnerabilities have been reported publicly each
year. The prevalence of vulnerabilities has motivated the devel-
opment of many new techniques to automatically detect vulner-
abilities. As learning-based approaches have achieved success in
many areas of software security and reliability [9, 11, 14, 22, 27–
29, 34, 36, 40], they have also demonstrated promising results in
detecting vulnerabilities [4, 5, 12, 23, 25, 41].

The vast majority of these techniques aim to detect the existence
of vulnerabilities. Unfortunately few of them take a step further
to identify the type of detected vulnerabilities, which is crucial
for developers to quickly understand the nature of the detected
vulnerabilities and develop corresponding strategies to repair them.
This kind of information can considerably save the time and effort of
developers in fixing vulnerabilities and thus significantly reduce the
pre-patchwindow, the time between the discovery of a vulnerability,
and the release of the patch for the vulnerability.

In this paper, we present our approach on automatically cate-
gorizing the types of vulnerabilities using deep learning models.
The main challenge of our approach boils down to choosing the
taxonomy for vulnerability categorization, identifying the features
that capture the intrinsic characteristics of different types of vul-
nerabilities, and determining which deep learning algorithms to
use.

First, we need to choose which taxonomy of vulnerability types
should be used. There exist various standards for categorizing vul-
nerabilities. For example, they can be categorized as memory-safety
vulnerabilities, authentication vulnerabilities, web security vulner-
abilities, etc., based on the subsystems in which the vulnerability
exists. Thememory-safety vulnerabilities can be further categorized
as buffer overflows, double free, use-after-free, and so on. From the
perspective of the developers who are fixing vulnerabilities, finer
granularity of categorization would be more useful.

Second, we should identify appropriate features that can be used
to distinguish different vulnerability types based on our choice of
taxonomy. Using a dataset from prior work that has been used to

https://doi.org/10.1145/3587716.3587738
https://doi.org/10.1145/3587716.3587738
https://doi.org/10.1145/3587716.3587738

ICMLC 2023, February 17–20, 2023, Zhuhai, China Crystal Contreras, Hristina Dokic, Zhen Huang, Daniela Stan Raicu, Jacob Furst, and Roselyne Tchoua

categorize vulnerabilities, i.e. performing multiclass classification,
may prove to be useful in this regard. When using prior work
that focuses on detecting vulnerabilities, i.e. performing binary
categorization of vulnerabilities, it is unclear whether the features
used by prior work will meet the needs for our purpose.

Lastly, many different deep neural networks exist. Some deep
neural networks have been used in prior work for detecting or
categorizing vulnerabilities and successfully achieved high accuracy.
We need to find out which of them works best for categorizing
vulnerabilities.

In order to offer fine-grained categorization, our approach uses
the taxonomy of Common Weakness Enumeration (CWE) for soft-
ware development, which uses a well-defined hierarchy of software
weaknesses, i.e. defects, and labels each type of software weakness
with a unique CWE ID. We find that the data we use from prior
work are rooted from the National Vulnerability Database (NVD)
and Software Assurance Reference Dataset (SARD), which come
with manually labelled CWE IDs.

Many studies have shown that the features based on the control
flow and data flow information on program source code can be
used to detect vulnerabilities accurately [24, 25, 41]. Particularly
`VulDeePecker is the pioneering work in categorizing vulnerabili-
ties using deep learning, but it only uses the features relevant to
syntax characteristics of type API/library function calls and limits
the categorization to 40 vulnerability classes. Also, their approach
has only been tested using the Recurrent Neural Network (RNN)
Bidirectional Long Short-Term Memory (BLSTM).

To extend the work on multiclass classification of vulnerabilities,
we use a dataset that consists of four different types of vulnerable
syntax characteristics: API/library function calls (API), array usage
(AU), pointer usage (PTR), and arithmetic expression (AE). This
dataset contains 11 classes found in `VulDeePecker’s dataset plus
39 new classes, giving us a total of 50 vulnerability classes. We
train two distinct deep learning models, one that uses BLSTM as
the deep neural network and another that uses Bidirectional Gated
Recurrent Unit (BGRU), on this data and compare their effectiveness
at classifying vulnerabilities. Our evaluation focuses on achieving
the highest F1-measure to determine the overall effectiveness of
our models’ ability to classify vulnerabilities.

In summary, this paper makes the following major contributions:
• We develop two different deep learning models in a simple
architecture to classify vulnerabilities.

• We use a dataset that contains 50 classes of vulnerabilities
covering four different types of syntax characteristics.

• Wehavemade our implementation publicly available at https:
//gitlab.com/vulnerability_analysis/vulnerability_classification.

The remainder of this paper is organized as follows. We discuss
the background of our work and related work in Section 2. We
present the design of our approach in Section 3. Section 4 shows the
results of our experiments. Finally, we summarize our conclusions
in Section 5.

2 RELATEDWORK
Over the years many techniques have been proposed to use ma-
chine learning or deep learning models to detect vulnerabilities in
C/C++ programs [4, 6, 11, 23, 24, 30, 32]. Some techniques extract

features from the dynamic behavior of programs, such as the exe-
cution traces [11]. Other techniques extract features from the static
program code [23, 24]. In this section, we focus on the techniques
that extract features from the source code of C/C++ programs.

2.1 Embedding Models
To transform program code into numeric vectors that can be used
by machine learning and deep learning models, various embedding
models, such as Word2Vec and Doc2Vec, are adopted for vulnera-
bility detection. Jeon and Kim compared five embedding models,
Word2Vec, Sent2Vec, Doc2Vec, Glove, and FastText, in their effec-
tiveness at representing C/C++ source code as vectors for deep
learning models to detect vulnerabilities [18]. Their results show
that FastText and Word2Vec have the best performance. Zhen Li, et
al. also find that Word2Vec yields significantly better results than
the classic bag-of-words method [24, 42].

Code2Vec is a recent embedding model that is specifically de-
signed to transform code into vectors [3]. It is originally used to
predict method names from the code of methods and achieves
decent accuracy. Although it may have the potential for other appli-
cations, such as vulnerability detection, it has two major limitations.
First, Code2Vec has a high dependency on variable names. Its ac-
curacy degrades when obfuscated or adversarial variable names
are used. Second, Code2Vec is designed to work with Java and C#
programs. In order to use it with C/C++, a new extractor needs
to be implemented. Bilgin et al. use astminer, an extractor for the
C language[21], with Code2Vec to detect vulnerabilities in C pro-
grams [6]. Their evaluation shows that Code2Vec does not perform
very well on highly imbalanced datasets.

2.2 Syntax Characteristics
Vulnerability detection techniques usually learn features from the
program code mostly relevant to vulnerabilities. Recent work has
shown promising results by focusing on program slices that con-
tain likely vulnerable code. The program slices are often obtained
by following the dependency to the code that fits certain syntax
characteristics, such as calling API functions.

SySeVR [24] distinguish four different types of syntax character-
istics: calling API functions, accessing arrays, using pointers, and
arithmetic operations. It applies machine learning on these syntax
characteristics individually and achieves different accuracy for each
of them. `VulDeePecker [41] focuses on only one type of syntax
characteristics: calling API functions.

Different from prior work, our work combines program slices
obtained using all the four different types of syntax characteristics
and extracts features from these program slices.

2.3 Multiclass Vulnerability Classification
The vast majority of prior work detects the existence of vulnerabil-
ities. Few work classifies the types of vulnerabilities.

`VulDeePecker classifies vulnerabilities into multiple classes. It
uses three BLSTM networks to learn global features, local features,
and to fuse features, respectively. The global features capture both
data dependency and data dependency among multiple statements
in program code, while the local features focus on information
within one statement, such as function call arguments.

https://gitlab.com/vulnerability_analysis/vulnerability_classification
https://gitlab.com/vulnerability_analysis/vulnerability_classification

Multiclass Classification of Software Vulnerabilities with Deep Learning ICMLC 2023, February 17–20, 2023, Zhuhai, China

`VulDeePecker uses a dataset of 33,409 programs and labels 40
classes of vulnerabilities.

Comparing to `VulDeePecker, our work has a simpler design
and classifies more vulnerability classes. It uses only one BLSTM
network. Our dataset has 54,049 programs and contains 50 classes
of vulnerabilities.

3 DESIGN
3.1 Vector Representation of Samples
Judging from previous studies [23, 24, 30, 32, 41], implementing
a methodical code structure representation of the data is seen to
enhance a model’s performance during feature learning. Since deep
neural networks expect vectors as inputs, we convert our samples
into vector representations while still retaining as much of the
context required to notice a vulnerability within that sample. We
normalize the samples by converting them into tokens and applying
a word embedding model to convert them into vectors. While there
are many word embedding models (e.g., TF-IDF, LDA, LSA, Ngram),
some vulnerability detection studies have found vector representa-
tions generated by Word2Vec to be highly effective in capturing the
context of a code sample when preprocessed efficiently [24, 32, 41].
Thus, we chose to use Gensim’s Word2Vec model to transform our
dataset into vectors. We flattened the Word2Vec matrices to shape
(samples, average row length, features) for our models to take as
input (see Fig. 1).

We apply the same sample tokenization technique as was used
in [4]. Comments and white spaces are removed. Elements specific
to the C/C++ language such as “calloc” or “sizeof” are left as is,
but user-defined elements (such as variable names and function
names) are assigned a generic naming convention as their token
representation. For example, function name “goodB2G” changes
to “func_0”, and so on (see Fig. 1). The result is an array of tokens
per slice, and each slice is stored in a pickle file and labeled with
a unique sample ID in order to avoid duplicate IDs. Each pickle
file contains an array of 7 elements including a list of tokens, its
vulnerable state generated from SySeVR (0/1), the index of the
potentially vulnerable line (used as midpoint when averaging our
samples), a list of the functions within the sample, the assigned
vulnerability syntax characteristic (API, AU, AE, PTR), their class
label (CWE ID), and the sample’s unique ID as assigned by us.

Our Word2Vec model was trained on the full dataset with hyper-
parameters: alpha of 0.05, min frequency count of 0, max vocab size
of None, hierarchical softmax of 0, negative sampling of 10, a vector
length v of 30, a window size of 3, using the skip-gram training
algorithm, and 10 epochs over the corpus. The difference in length
between each code sample carried over to the vector representations
per sample. That is, the number of vectors representing tokens
per sample was imbalanced. Since BGRU and BLSTM expect their
input size to be of the same length, we averaged out the lengths by
calculating the average length of the samples (𝑋), then truncating
or padding samples to match the average length. If the length was
less than 𝑋 , then the remaining slots were padded with zero-filled
vectors. If the length was above 𝑋 , then we calculated the midpoint
to be where the index of the vulnerable syntax occurred and kept
lines that were 𝑋

2 before and 𝑋
2 - 1 after the midpoint in order to

retain as much context as possible around the vulnerable line. The

Table 1: Model Hyper-Parameters

Optimizer ADAM
Loss Function categorical_crossentropy

Activation Function softmax
Learning rate 0.001

Accuracy Metric CategoricalAccuracy, Recall
Neuron Units 256
Hidden Layers 2
Batch Size 64
Epochs 60

Dropout Rate 0.2

result is a 3-dimensional shape of (N, 𝑋 , v), where N represents the
total number of samples, 𝑋 is the average length of 266 rows per
sample (where each row is a vector that represents a token), and a
column size of v. To reduce the training time for our deep neural
networks, we flattened the matrices into 2-dimensions (54049, 7980),
where each row still represents one sample but the columns are now
all the tokens sitting side by side resulting in a feature length of
𝑋×v shape. Preliminary tests confirmed that flattening the matrices
did not change the outcome, and thus was safe to proceed with this
technique.

3.2 Training Phase
Previous natural language processing and software vulnerability
detection/classification studies have used deep neural networks,
such as BGRU or BLSTM, in their experiments because of the net-
work’s ability to better grasp the context of more complex data
[4, 23, 24, 32, 41]. RNNs are a suitable selection since they deal with
sequential data, specifically Gated Recurrent Units (GRU) and Long
Short-Term Memory (LSTM) because they do not suffer from the
Vanishing Gradient problem like other RNNs [23]. GRU and LSTM
contain memory cells that help the models retain important fea-
tures throughout each iteration of the training process. By making
GRU and LSTM bidirectional, the model is better able to capture
the context of a statement. Thus, we also chose to use BGRU and
BLSTM for our multiclass classification of software vulnerabilities.

We performed a grid search with stratified 3-fold cross validation
to find adequate hyper-parameter values to use for our models.
For both models we use the sigmoid activation function in the
hidden layers, hard sigmoid as our recurrent activation function,
categorical cross-entropy loss, and categorical accuracy plus recall
as our metrics. We use softmax as our dense layer’s activation
function since it is best for multiclass classification. The parameters
of our model are listed in Table 1. Figure 2 shows the architecture
for our neural networks.

3.3 Evaluation Metrics
To evaluate the effectiveness of our models in their ability to classify
vulnerabilities, we calculate the mean and weighted F1-measure
(aka F1-score), recall (aka true positive rate or TPR), false positive
rate (FPR), and false negative rate (FNR). The average of each metric
was calculated to see our models’ effectiveness at a macro level. To
take into consideration the imbalanced data, we also calculated the

ICMLC 2023, February 17–20, 2023, Zhuhai, China Crystal Contreras, Hristina Dokic, Zhen Huang, Daniela Stan Raicu, Jacob Furst, and Roselyne Tchoua

static void goodB2G2()
int64_t * data ;
data = NULL;
data = (int64_t *) calloc (1 , sizeof (int64_t));
data [0] = 5L L
printLongLongLine(data[0]);

[‘static’, ‘void’, ‘func_0’, ‘(‘, ‘)’,
‘variable_0’, ‘*’, ‘variable_1’, ‘=’,
‘variable_1’, ‘=’, ‘(‘, ‘int64_t’, ‘*’, ‘)’,
‘calloc’, ‘(‘, ‘100’, ‘,’, ‘sizeof’, ‘(‘,
‘variable_0’, ‘)’, ‘)’, ‘variable_1’, ‘[‘, ‘0’,
‘]’, ‘=’, ‘func_1’, ‘(‘, ‘variable_1’, ‘[‘, ‘0’,
‘]’, ‘)’]

[[0.01003225 0.00331451 ... 0.01400539 0.0055488]
 [0.000307 0.01076798 ... -0.00056971 -0.0090057]
 [-0.00717854 -0.01300672 ... -0.00311062 0.00969776]

 [-0.00886669 -0.01199083 ... -0.01178785 -0.01233405]
 [0.01461655 -0.00014667 ... -0.010656 0.0081686]
 [-0.01501023 0.00833525 ... -0.00609653 0.01577502]]

Figure 1: An example of a code slice’s conversion into tokens before transforming into vectors via Word2Vec

Figure 2: The architecture for our BGRU and BLSTM models.

weighted average by calculating the weight of each vulnerability
class and multiplying it with each class’s respective metric before
calculating the total mean.

F1-score is a better indicator of our model’s effectiveness than
accuracy because we have an imbalanced data set, which causes
our work to achieve higher accuracy for vulnerability classes with
fewer positive samples.

Recall is useful for depicting our model effectiveness in correctly
classifying vulnerabilities. The more true positives we have, the less
false negatives there will be. Recall gives a sense of completeness in
each class. We want to decrease the false negatives. Basically, out of
the positive examples, how many did our model correctly identify
versus how many were missed? False negatives can either repre-
sent missed vulnerabilities (labeled non-vulnerable) or misclassified
vulnerabilities. The higher the recall, the lower the number of mis-
classified vulnerabilities. This is important because if the classifier
misses some, then the vulnerability can go undetected and will get
overlooked by the programmer. Also, if the classifier misclassifies
them, then the programmer may not be able to recognize where
the real vulnerability lies.

As part of the F1-score, precision gives us a better indication for
our model’s performance in correctly classifying a vulnerability.
Here the classifier may have missed some vulnerabilities, but out
of the predicted vulnerabilities, how many were actually correct?
So here we would like to avoid false positives, which means the
programmer may have to look at errors that are not actually errors.

3.4 Dataset
Our dataset comprises of 54,049 vulnerable samples obtained from
SARD and NVD [24]. We use CWE IDs as the vulnerability types
for these samples. In total the samples cover 50 CWE IDs. Each
sample is a program slice that encapsulates a syntax characteristics
of the vulnerable code. The slices are split into tokens, which are
transformed to vectors to feed into deep learning models.

Table 2: The number of samples for each CWE ID.

CWE ID Count CWE ID Count
23 2533 400 594
36 2498 401 296
78 1587 404 107
88 200 415 398
89 660 416 554
90 237 426 151
114 694 427 318
119 1940 457 519
121 5760 476 808
122 8356 506 166
124 3102 590 1556
126 1786 591 120
127 2735 617 143
134 2842 666 400
190 702 675 107
191 205 680 1318
194 1709 690 1037
195 1528 758 320
197 225 761 540
200 103 762 1416
252 118 771 329
253 118 773 201
319 584 785 171
363 128 787 144
369 400 789 1586

4 EXPERIMENTS AND RESULTS
The following Research Questions (RQs) are at the center of our
experiments:

• RQ1: How effective are our models for multiclass vulner-
ability classification using the combined dataset of syntax
vulnerability characteristics API, AE, AU, and PTR? Can we
explain their (in)effectiveness?

Multiclass Classification of Software Vulnerabilities with Deep Learning ICMLC 2023, February 17–20, 2023, Zhuhai, China

• RQ2: How effective are our models for multiclass vulner-
ability classification in datasets containing only a single
syntax vulnerability characteristic? Can we explain their
(in)effectiveness?

We implement two deep neural networks, BLSTM and BGRU, in
Python using Keras (which runs on top of TensorFlow) in order
to answer these questions [19, 33]. We randomly select 80% of the
dataset as the training set and 20% as our test set using stratified
split technique so that the proportions of our 50 classes would
remain intact. We run our experiments on a server that uses an
AMD Ryzen Threadripper 3970X CPU running at 3.7GHz and has
a NVIDIA Quadro RTX 5000 GPU.

4.1 Experiments for Answering RQ1
First, we trained and evaluated our two models on the combined
dataset. From the results presented in Table 3, we discover that
BGRU outperforms BLSTM with a mean F1 (M_F1) of 87.67% versus
84.34%, respectively. We also observe that the F1-scores for the
vast majority of vulnerability types are above 80%, as shown in
Fig. 3. Only 6 of our 50 vulnerability types have an F1-score below
80%, indicating a reasonable effectiveness of our models’ ability to
classify vulnerabilities.

To understand the F1-scores for different vulnerability classes,
we take a deeper look on some of the best and worst performing
classes. The two classes with the lowest F1 across both models are
CWE-191 “Integer Underflow" (66.67% BGRU, 63.01% BLSTM) and
CWE-617 “Reachable Assertion" (58.33% BGRU, 71.43% BLSTM).

CWE-191 has a total of 204 samples. Our model tends to misiden-
tify this class with CWE-190 “Integer Overflow or Wraparound",
CWE-121 “Stack-based Buffer Overflow", or CWE-122 “Heap-based
Buffer Overflow". This is because these classes are identified with
various yet similar arithmetic operations, making it hard for our
models to precisely differentiate between them.

CWE-617 has a total of 143 samples. Our model often misidenti-
fies this class with CWE-369 “Divide by zero", CWE-252 “Unchecked
Return Value", and CWE-126 “Buffer Over-read". Because assertion
statements often exist in code related with vulnerabilities in these
classes, it is challenging to identify vulnerabilities belonging to
CWE-617.

The two classes with the highest F1 scores are CWE-789 “Mem-
ory Allocation with Excessive Size Value” and CWE-761 “Free of
Pointer not at Start of Buffer”. Most of the samples for CWE-789
have a common pattern of dynamically allocating memory using
the malloc function with the allocation size set in a variable, which
misses the code to check the maximum allocation size. The unique
pattern contributes to the successful classification of this class. The
few samples in CWE-761 that were misclassified typically omit the
call to malloc function or use the new operator instead.

Similarly, CWE-761 samples consistently contain the code that
changes the value of a pointer before frees it. The majority of the
samples use a for loop to change the value of a pointer and is
typically followed by an if statement.

4.2 Experiments for Answering RQ2
Next, we trained and evaluated our twomodels over each individual
vulnerability type. As we can see from Table 4, BGRU would score

roughly the same if not slightly better than BLSTM across all types.
Both models performed better among the AU and PTR types than
with the API and AE types. The highest M_F1 over a single vulner-
ability type was in the BGRU + AU type with 86.68%. Our lowest
scoring type was for BLSTM + API, which was unexpected since it
had the 2nd highest number of samples after PTR. A Pearson Cor-
relation Coefficient of 0.2531 between the F1 and counts confirms
that there is not strong enough evidence to support a correlation
between number of samples and correct predictions, indicating the
problem lies elsewhere. We also observe that the M_F1 of BGRU
+ the combined dataset outperforms all the individually trained
models, indicating that using the combined dataset improves the
accuracy of our models.

The AE vulnerability type contains 9 CWE IDs. The worst per-
forming one was CWE-23 “Relative Path Traversal” with an F1
of 0.0513. This weakness arises when a path sequence, such as ‘..’,
given by an external source does not get neutralized, which could
result in the access of a restricted directory. This class was most
commonly misclassified as CWE-36, the 2nd worst performing class
of this type with an F1 of 0.6422. This weakness arises upon the
failure of neutralizing an external input to a path containing an
absolute path sequences, such as ‘abs/path’, leading to the same
consequences as the prior example. We note that these weaknesses
are better suited for the API type, but had many samples in the
AE dataset we obtained from SySeVR. Nevertheless, the samples
for these 2 classes shared many common patterns, such as their
vulnerabilities containing the open function and omitting to neu-
tralize or validate the external path passed in that is being opened.
This causes their vectors to overlap in space, making it clear how
CWE-23 and CWE-36 can be misidentified with each other.

CWE-124 “Buffer Underwrite (aka Buffer Underflow)” is found
amongst the API, AU, and PTR types, and had low F1 scores of
0.5387, 0.6012, and 0.6667, respectively. CWE-124 is defined as the
software writing “to a buffer using an index or pointer that refer-
ences a memory location prior to the beginning of the buffer"[10].
To catch this, our model would need to know if the data is be-
ing written to an invalid (or not within scope) pointer address. In
the AU realm, this CWE would often get predicted as CWE-127,
CWE-126, CWE-121, and sometimes CWE-400. Likewise, CWE-127
“Buffer Under-Read” would commonly get misclassified as CWE-
124. CWE-127 occurs when the software tries to read a buffer using
an index or pointer that references a memory location prior to the
beginning of the buffer. The distinction between these two classes
in our samples is the presence of a read method existing in the latter.
However, since many of the other lines contain similar tokens and
pointer arithmetic, these two would get cross-wired in the vector
space.

Thus, it seems as though the combination of the datasets intro-
duces more variance, allowing our models to better discover the
minute distinctions between classes.

5 CONCLUSION
We present a simple approach to categorizing software vulnerabili-
ties using deep learning models and CWE IDs as labels. Specifically,
we train two different deep neural networks on 50 classes of vulner-
abilities across four types of syntax characteristics, then compare

ICMLC 2023, February 17–20, 2023, Zhuhai, China Crystal Contreras, Hristina Dokic, Zhen Huang, Daniela Stan Raicu, Jacob Furst, and Roselyne Tchoua

Table 3: Experimental results of our models against the SySeVR dataset

Model M_TPR M_FPR M_FNR M_F1 W_TPR W_FPR W_FNR W_F1
BLSTM + SySeVR 0.8484 0.0024 0.1516 0.8434 0.8848 0.0059 0.0023 0.8844
BGRU + SySeVR 0.8680 0.0020 0.1320 0.8767 0.9052 0.0055 0.0019 0.9046
SySeVR’s BGRU N/A 0.0020 0.0147 0.8580 N/A N/A N/A N/A

Figure 3: F1-scores for both models using SySeVR’s dataset for classes that have a minimum of 100 samples.

Table 4: Experimental results for each vulnerable syntax characteristic

Model M_TPR M_FPR M_FNR M_F1 W_TPR W_FPR W_FNR W_F1
BLSTM + API 0.7755 0.0085 0.2245 0.7839 0.8050 0.0163 0.0078 0.8021
BLSTM + AE 0.8407 0.0142 0.1593 0.8092 0.8830 0.0112 0.0130 0.8654
BLSTM + AU 0.8600 0.0120 0.1400 0.8599 0.8410 0.0208 0.0106 0.8397
BLSTM + PTR 0.8219 0.0048 0.1781 0.8212 0.8421 0.0098 0.0045 0.8416
BGRU + API 0.8046 0.0076 0.1954 0.8153 0.8240 0.0150 0.0070 0.8229
BGRU + AE 0.8417 0.0143 0.1583 0.8087 0.8830 0.0114 0.0130 0.8645
BGRU + AU 0.8649 0.0121 0.1351 0.8668 0.8394 0.0207 0.0107 0.8385
BGRU + PTR 0.8440 0.0041 0.1560 0.8562 0.8662 0.0096 0.0038 0.8660

them against each other and against other similar models. Our
evaluation demonstrates a reasonable performance in our models’
ability to categorize vulnerabilities with a mean F1 of 87.67%.

ACKNOWLEDGMENTS
This work was supported in part by US National Science Foundation
(NSF) grant CNS-2153474.

REFERENCES
[1] 533 million Facebook users’ phone numbers and personal data have been

leaked online 2021. https://www.businessinsider.com/stolen-data-of-533-million-
facebook-users-leaked-online-2021-4.

[2] All You Need to Know About WannaCry Ransomware 2021.
https://www.mimecast.com/blog/all-you-need-to-know-about-wannacry-
ransomware/.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2Vec:
Learning Distributed Representations of Code. Proc. ACM Program. Lang. 3,
POPL, Article 40 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290353

[4] Amy Aumpansub and Zhen Huang. 2021. Detecting Software Vulnerabilities Us-
ing Neural Networks. In 2021 13th International Conference on Machine Learning
and Computing (Shenzhen, China) (ICMLC 2021). Association for Computing Ma-
chinery, New York, NY, USA, 166–171. https://doi.org/10.1145/3457682.3457707

[5] AmyAumpansub and ZhenHuang. 2022. Learning-Based Vulnerability Detection
in Binary Code. In 2022 14th International Conference on Machine Learning and
Computing (ICMLC) (Guangzhou, China) (ICMLC 2022). Association for Comput-
ing Machinery, New York, NY, USA, 266â€“271. https://doi.org/10.1145/3529836.
3529926

[6] Zeki Bilgin, Mehmet Akif Ersoy, Elif Ustundag Soykan, Emrah Tomur, Pinar
Çomak, and Leyli Karaçay. 2020. Vulnerability Prediction From Source Code
Using Machine Learning. IEEE Access 8 (2020), 150672–150684. https://doi.org/
10.1109/ACCESS.2020.3016774

[7] David Brumley, T Chiueh, R Johnson, and H Lin. 2007. RICH: Automati-
cally protecting against integer-based vulnerabilities. In Proceedings of Ndss
’07. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7344&rep=
rep1&type=pdf%5Cnpapers3://publication/uuid/C0320481-2B40-4264-B778-
CBB64ECEFAA4

[8] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. 2003. {Point-
Guard}: Protecting Pointers from Buffer Overflow Vulnerabilities. In In Proceed-
ings of the 12th Usenix Security Symposium.

[9] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. ISSTA 2018 - Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis (2018),
95–105. https://doi.org/10.1145/3213846.3213848

[10] CWE. 2021 [Online]. Common Weakness Enumeration. https://cwe.mitre.org/
data/index.html

[11] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin
Feist, and Laurent Mounier. 2016. Toward Large-Scale Vulnerability Discovery
Using Machine Learning. In Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy (New Orleans, Louisiana, USA) (CODASPY
’16). Association for Computing Machinery, New York, NY, USA, 85–96. https:
//doi.org/10.1145/2857705.2857720

[12] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin
Feist, and Laurent Mounier. 2016. Toward Large-Scale Vulnerability Discovery
Using Machine Learning. In Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy (New Orleans, Louisiana, USA) (CODASPY
’16). Association for Computing Machinery, New York, NY, USA, 85–96. https:
//doi.org/10.1145/2857705.2857720

https://doi.org/10.1145/3290353
https://doi.org/10.1145/3457682.3457707
https://doi.org/10.1145/3529836.3529926
https://doi.org/10.1145/3529836.3529926
https://doi.org/10.1109/ACCESS.2020.3016774
https://doi.org/10.1109/ACCESS.2020.3016774
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7344&rep=rep1&type=pdf%5Cnpapers3://publication/uuid/C0320481-2B40-4264-B778-CBB64ECEFAA4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7344&rep=rep1&type=pdf%5Cnpapers3://publication/uuid/C0320481-2B40-4264-B778-CBB64ECEFAA4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7344&rep=rep1&type=pdf%5Cnpapers3://publication/uuid/C0320481-2B40-4264-B778-CBB64ECEFAA4
https://doi.org/10.1145/3213846.3213848
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1145/2857705.2857720

Multiclass Classification of Software Vulnerabilities with Deep Learning ICMLC 2023, February 17–20, 2023, Zhuhai, China

[13] Zhen Huang, Trent Jaeger, and Gang Tan. 2021. Fine-Grained Program Partition-
ing for Security. In Proceedings of the 14th European Workshop on Systems Security
(Online, United Kingdom) (EuroSec ’21). Association for Computing Machinery,
New York, NY, USA, 21–26. https://doi.org/10.1145/3447852.3458717

[14] Zhen Huang and David Lie. 2014. Ocasta: Clustering Configuration Settings for
Error Recovery. In Proceedings of the 2014 44th Annual IEEE/IFIP International
Conference onDependable Systems andNetworks (DSN ’14). IEEEComputer Society,
Washington, DC, USA, 479–490. https://doi.org/10.1109/DSN.2014.51

[15] Zhen Huang and Gang Tan. 2019. Rapid Vulnerability Mitigation with Secu-
rity Workarounds. In Proceedings of the 2nd NDSS Workshop on Binary Analysis
Research (BAR ’19). https://doi.org/10.14722/bar.2019.23052

[16] Zhen Huang and Marc White. 2022. Semantic-Aware Vulnerability Detection. In
2022 IEEE International Conference on Cyber Security and Resilience (CSR). 68–75.
https://doi.org/10.1109/CSR54599.2022.9850330

[17] Zhen Huang and Xiaowei Yu. 2021. Integer Overflow Detection with Delayed
Runtime Test. In Proceedings of the 16th International Conference on Availability,
Reliability and Security, Vienna, Austria, August 17-20, 2021 (ARES 2021). ACM,
28:1–28:6. https://doi.org/10.1145/3465481.3465771

[18] Sanghoon Jeon and Huy Kang Kim. 2021. AutoVAS: An automated vulnerability
analysis system with a deep learning approach. Computers and Security 106
(2021), 102308. https://doi.org/10.1016/j.cose.2021.102308

[19] Keras. [n. d.]. About Keras. Accessed Oct. 18, 2021 [Online]. https://keras.io/
about/

[20] S. Kim, S. Woo, H. Lee, and H. Oh. 2017. VUDDY: A Scalable Approach for
Vulnerable Code Clone Discovery. In 2017 IEEE Symposium on Security and
Privacy (SP). 595–614. https://doi.org/10.1109/SP.2017.62

[21] Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli.
2019. PathMiner: a library for mining of path-based representations of code. In
Proceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 13–17.

[22] Zhen Li, Deqing Zou, Jing Tang, Zhihao Zhang,Mingqian Sun, andHai Jin. 2019. A
Comparative Study of Deep Learning-Based Vulnerability Detection System. IEEE
Access 7 (2019), 103184–103197. https://doi.org/10.1109/ACCESS.2019.2930578

[23] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: An Automated Vulnerability Detection System Based on Code Simi-
larity Analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications (Los Angeles, California, USA) (ACSAC ’16). Association for Comput-
ing Machinery, New York, NY, USA, 201–213. https://doi.org/10.1145/2991079.
2991102

[24] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.
SySeVR: A Framework for UsingDeep Learning toDetect Software Vulnerabilities.
IEEE Transactions on Dependable and Secure Computing (2021), 1–1. https:
//doi.org/10.1109/TDSC.2021.3051525

[25] Z. Li, D. Zou, Shouhuai Xu, Xinyu Ou, H. Jin, S. Wang, Zhijun Deng, and Y.
Zhong. 2018. VulDeePecker: A Deep Learning-Based System for Vulnerability
Detection. In Proceedings of the 25th Annual Network and Distributed System
Security Symposium, Vol. abs/1801.01681.

[26] LockFile: Ransomware Uses PetitPotam Exploit to CompromiseWindowsDomain
Controllers 2021. https://symantec-enterprise-blogs.security.com/blogs/threat-
intelligence/lockfile-ransomware-new-petitpotam-windows.

[27] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. SIGPLAN Not. 51, 1 (jan 2016), 298–312. https://doi.org/10.1145/
2914770.2837617

[28] James Mickens, Martin Szummer, and Dushyanth Narayanan. 2007. Snitch:
interactive decision trees for troubleshooting misconfigurations. In SYSML’07:
Proceedings of the 2nd USENIX workshop on Tackling computer systems problems
with machine learning techniques (Berkeley, CA, USA). USENIX Association, 1–6.

[29] Dhaval Miyani, Zhen Huang, and David Lie. 2017. BinPro: A Tool for Binary
Source Code Provenance. arXiv:1711.00830. arXiv (2017).

[30] Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, and Kazuo Mak-
ishima. 2019. A machine learning approach to detection of JavaScript-based
attacks using AST features and paragraph vectors. Applied Soft Computing 84
(2019), 105721. https://doi.org/10.1016/j.asoc.2019.105721

[31] Hovafv Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-Space Randomization.
In Proceedings of the11th {ACM} Conference on Computer and Communications
Security ({CCS}). 298–307.

[32] Gaigai Tang, Lianxiao Meng, Huiqiang Wang, Shuangyin Ren, Qiang Wang,
Lin Yang, and Weipeng Cao. 2020. A Comparative Study of Neural Network
Techniques for Automatic Software Vulnerability Detection. In 2020 International
Symposium on Theoretical Aspects of Software Engineering (TASE). 1–8. https:
//doi.org/10.1109/TASE49443.2020.00010

[33] TensorFlow. 2021 [Online]. KerasClassifier. https://www.tensorflow.org/api_
docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier

[34] Chin-Wei Tien, Shang-Wen Chen, Tao Ban, and Sy-Yen Kuo. 2020. Machine
Learning Framework to Analyze IoT Malware Using ELF and Opcode Features.
Digital Threats: Research and Practice 1 (2020), 1–19. Issue 1. https://doi.org/10.
1145/3378448

[35] VMware Flaw a Vector in SolarWinds Breach? 2020.
https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-solarwinds-
breach/.

[36] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically Learning Semantic
Features for Defect Prediction. In Proceedings of the 38th International Conference
on Software Engineering (Austin, Texas) (ICSE ’16). Association for Computing Ma-
chinery, New York, NY, USA, 297–308. https://doi.org/10.1145/2884781.2884804

[37] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy. IEEE, 497–512.

[38] F. Wu, J. Wang, J. Liu, andW.Wang. 2017. Vulnerability detection with deep learn-
ing. In 2017 3rd IEEE International Conference on Computer and Communications
(ICCC). 1298–1302. https://doi.org/10.1109/CompComm.2017.8322752

[39] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. 2011. Vulnerability Ex-
trapolation: Assisted Discovery of Vulnerabilities Using Machine Learning. In
Proceedings of the 5th USENIX Conference on Offensive Technologies (San Francisco,
CA) (WOOT’11). USENIX Association, USA, 13.

[40] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Verbowski, and
Arunvijay Kumar. 2011. Context-based online configuration-error detection. In
Proceedings of the 2011 USENIX conference on USENIX annual technical conference.
28–28.

[41] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2021.
`VulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability
Detection. IEEE Transactions on Dependable and Secure Computing 18, 5 (2021),
2224–2236. https://doi.org/10.1109/TDSC.2019.2942930

[42] R. Řehůřek. 2019 [Online]. models.word2vec – Word2vec embeddings. Gensim.
https://radimrehurek.com/gensim_3.8.3/models/word2vec.html

https://doi.org/10.1145/3447852.3458717
https://doi.org/10.1109/DSN.2014.51
https://doi.org/10.14722/bar.2019.23052
https://doi.org/10.1109/CSR54599.2022.9850330
https://doi.org/10.1145/3465481.3465771
https://doi.org/10.1016/j.cose.2021.102308
https://keras.io/about/
https://keras.io/about/
https://doi.org/10.1109/SP.2017.62
https://doi.org/10.1109/ACCESS.2019.2930578
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1145/2914770.2837617
https://doi.org/10.1145/2914770.2837617
https://doi.org/10.1016/j.asoc.2019.105721
https://doi.org/10.1109/TASE49443.2020.00010
https://doi.org/10.1109/TASE49443.2020.00010
https://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier
https://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasClassifier
https://doi.org/10.1145/3378448
https://doi.org/10.1145/3378448
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1109/CompComm.2017.8322752
https://doi.org/10.1109/TDSC.2019.2942930
https://radimrehurek.com/gensim_3.8.3/models/word2vec.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Embedding Models
	2.2 Syntax Characteristics
	2.3 Multiclass Vulnerability Classification

	3 Design
	3.1 Vector Representation of Samples
	3.2 Training Phase
	3.3 Evaluation Metrics
	3.4 Dataset

	4 Experiments and Results
	4.1 Experiments for Answering RQ1
	4.2 Experiments for Answering RQ2

	5 Conclusion
	Acknowledgments
	References

