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Abstract—Symbolic execution is a popular software testing
technique that can systematically examine program code to
find bugs. Owing to the prevalence of software vulnerabilities,
symbolic execution has been extensively used to detect software
vulnerabilities. A major challenge of using symbolic execution
to find complicated vulnerabilities such as use-after-free is to
not only direct symbolic execution to explore relevant program
paths but also explore the paths in a specific order. In this paper,
we describe a targeted symbolic execution, called UAFDetect,
for finding use-after-free vulnerabilities efficiently. UAFDetect
guides symbolic execution to focus on paths that are likely
to cause a use-after-free by pruning paths that are unlikely
or infeasible to cause that. It uses dynamic typestate analysis
to identify unlikely paths and static control flow analysis to
identify infeasible paths. UAFDetect performs typestate analysis
to detect the occurrence of use-after-free vulnerabilities. Upon the
detection of a vulnerability, UAFDetect generates an exploit to
trigger the vulnerability. We develop the prototype of UAFDetect
and evaluate it on real-world use-after-free vulnerabilities. The
evaluation demonstrates that UAFDetect can find use-after-free
vulnerabilities effectively and efficiently.

Index Terms—Software testing, symbolic execution, vulnerabil-
ity detection, use-after-free, typestate analysis, program analysis.

I. INTRODUCTION

Symbolic execution [1] is a program analysis technique
that systematically explores program paths and automatically
produces test inputs. It aims to address the challenges of
achieving high code coverage and generating comprehensive
test inputs. For decades, it has been used in many areas such
as test input generation [2], bug finding [3], and security
testing [4].

By representing program input values as symbolic values
that can denote any arbitrary values, symbolic execution runs
a program and follows every branch that is feasible under
the constraints of the symbolic input values. This exhaustive
exploration of program paths enables symbolic execution to
find complex bugs that are difficult to detect.

Use-after-free (UAF) is a complex software bug and is
ranked as one of the top 25 most dangerous software weak-
nesses [5]. It can lead to severe security issues including
program crash, data corruption, information leak, and code in-
jection. UAF vulnerabilities exist in all kinds of software such
as OS kernel [6], web browser [7], multimedia framework [8],
and remote desktop client [9].

Three different program operations take part in a UAF:
a malloc operation that allocates a memory region, a free
operation that deallocates the memory region, and a use oper-
ation that references the deallocated memory region. A UAF
happens when a program first performs a malloc operation,
then a free operation on a pointer that points to the memory
region allocated by the malloc, and finally a use operation via
a pointer that points to already freed memory region. As we
can see, it requires the three operations to occur in a specific
order to trigger a UAF.

This makes it challenging for existing symbolic execution
tools to detect UAFs, because they are typically designed
to aim for higher code coverage and not designed to guide
program execution to trigger UAFs. They spend most of the
time exploring program paths irrelevant to UAFs and are
unable to invoke the three operations in the specific order
even when they happen to reach relevant program paths. To
find UAFs efficiently, a symbolic execution tool must direct
program executions not only toward program paths related to
UAFs but also invoke the operations in the specific order.

In this work, we address the challenges of detecting UAFs
efficiently by combining typestate analysis [10] with sym-
bolic execution. Our work, called UAFDetect, uses a targeted
symbolic execution that performs typestate analysis based
path pruning to guide symbolic execution to find UAFs. The
typestate analysis enables symbolic execution to keep track of
the order of the operations involved in a UAF, while the path
pruning forces symbolic execution to focus on program paths
relevant to UAFs.

Similar to prior work [11], our typestate analysis models the
lifecycle of a pointer as a finite-state machine, called typestate,
which defines the set of operations, i.e. malloc, free, and use,
that can be applied to each state of a pointer, and the state
transitions that can be caused by these operations. A special
error state denotes the occurrence of a UAF. Based on the
typestate analysis, our symbolic execution finds a UAF when
the typestate of a pointer ends in the error state.

UAFDetect uses two major techniques, a novel unlikely path
pruning and an infeasible path pruning. The two techniques
prevent symbolic execution from wasting time executing pro-
gram paths that are unlikely or infeasible to trigger UAFs.
When symbolic execution reaches such a program path, they
terminate the execution of the path so that symbolic execution



can quickly move on to explore other paths.
The unlikely path pruning leverages typestate analysis to

identify program paths that are unlikely to trigger UAFs when
they do not invoke UAF-related operations in the specific order
that can trigger a UAF. We developed the unlikely path pruning
based on the observation that a UAF is unlikely to occur when
the operations does not follow the exact order of malloc, free,
and use. We consider such a path as an unlikely path because
there is no guarantee that this path can never trigger a UAF
ultimately. Our symbolic execution performs typestate analysis
to identify and prune unlikely paths.

The infeasible path pruning identifies and prunes paths
that can never cause a UAF. It uses reachability analysis to
identify program paths that can never reach the statements
invoking one or more UAF-related operations. UAFDetect runs
the reachability analysis statically on the program and feeds
the analysis results to the symbolic execution, which use the
results to identify and prune infeasible paths.

This paper makes the following main contributions:

• We propose an approach called UAFDetect to find UAF
vulnerabilities efficiently. Based on typestate analysis and
static reachability analysis, the approach uses symbolic
execution to execute target programs and guide program
executions to trigger UAFs efficiently by pruning program
paths that are unlikely or infeasible to cause UAFs.

• We develop two program path pruning technique, unlikely
paths pruning and infeasible path pruning, to improve the
efficiency of symbolic execution in finding UAFs.

• We have implemented the approach in a prototype and
evaluated it on real world UAF vulnerabilities. We de-
scribe our design and evaluation in the paper.

• Our evaluation on UAFDetect shows that it can effec-
tively and efficiently discover UAF vulnerabilities in real
world programs.

II. BACKGROUND AND RELATED WORK

A. Typestate Analysis

A typestate analysis [10] is a program analysis commonly
used for identifying complex bugs that involve multiple pro-
gram operations and multiple program states. These operations
can be valid for some specific program states, but can be
invalid for some other program states. A typestate analysis
models these operations and states as a typestate, and identifies
a bug by finding operations that are invalid for a typestate.

We define a typestate as a finite-state machine
(
∑

, S, s, δ, F ), where
∑

is the set of operations, S is
the set of states, s is the initial state, δ is a state transition
function, and F is the set of final states. A typestate is
initialized to the initial state s and transits to other states,
based on the invoked operations, the current state, and the
state transition function δ, which maps a state m ∈ S and
an operation op ∈

∑
on p to a state n ∈ S, meaning that

when op is applied to a typestate in state m, the state will be
changed to n.

B. Typestate Analysis for UAF

A use-after-free (UAF) vulnerability is a complex bug that
occurs when a program attempts to use a freed pointer. It can
cause unexpected program behavior and allow an attacker to
compromise computer systems. Due to its complexity, a UAF
can be manifested only by invoking multiple operations on a
pointer in a specific order.

To trigger a UAF, a malloc operation needs to be first
invoked to set a pointer to a valid memory region, then a free
operation is invoked on the pointer to deallocate the memory
region, and lastly a use operation is invoked on the pointer.

These operations involved in a UAF and the consequences
of these operations can be modeled as a typestate for a pointer,
as shown in Figure 1. The typestate of a pointer starts in the
Init state. It can transit to the Allocated state upon a
malloc operation. When a typestate is in the Allocated
state, any use operation will not change the state. The typestate
transits to the Deallocated state upon a free operation.
And a free operation on the Deallocated state causes the
typestate to end in the Error state.

C. Symbolic Execution

Symbolic execution runs target programs with symbolic
input values to explore all possible program paths [12]. During
an execution, the symbolic values constitute the program path
constraints that determine whether a program path is feasible
or not. Symbolic execution automatically transforms symbolic
input values into concrete input values, which can be used as
a test case, when a program path terminates.

Path explosion and constraint solving are two major chal-
lenges of applying symbolic execution to complex real-world
programs [13]. Branches in a target program will cause the
number of all possible paths to grow exponentially, i.e. path
explosion, and substantially limit symbolic execution to scale
to large and complex target programs. Constraint solving is
used by symbolic execution to check whether path constraints
are solvable and can incur dramatic performance overhead.

Techniques have been proposed to address the challenges
by optimizing symbolic execution in several directions: to
avoid executing uninteresting paths [14]–[17], to execute only
individual functions instead of a whole program [18], to merge
execution states for multiple paths [19], [20], to combine
symbolic execution with fuzzing [21]–[23], or to execute a
program in the backward order [24], [25].

In principle, our work guides symbolic execution to UAFs
by avoiding executing uninteresting paths. As far as we know,
we are the first to use typestate analysis during symbolic
execution.

D. UAF Detection

Many techniques have been proposed to detect and address
vulnerabilities [3], [4], [11], [16], [23], [26]–[38], particularly
UAF vulnerabilities. On the one hand, some techniques detect
exploits aiming to trigger UAFs at runtime and then mitigate
the exploits [30]–[32]. Unlike our work, these techniques do
not generate exploits, the inputs to trigger UAFs. On the
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Fig. 1. Typestate for detecting a UAF: each oval represents a state; each
arrow denotes a state transition and is labeled with the operation that caused
the transition.

other hand, some techniques find UAFs and generate exploits
to trigger the detected UAFs [11], [29]. We focus on these
techniques as our work serves the same purpose.

Some UAF detection tools are based on fuzzing that finds
bugs by executing a target program with some seed inputs,
and mutating these inputs into new inputs based on execution
results. UAFuzz [29] uses a fuzzing strategy that favors inputs
that can guide program execution toward operations relevant
to UAFs. UAFuzz sends the inputs it generated to a profiling
tool such as Valgrind to determine whether the inputs cause
UAFs. Unlike our work, UAFuzz does not leverage typestate
analysis and focuses on binary code.

UAFL [11] incorporates typestate analysis into fuzzing to
detect UAFs. It uses static analysis to identify the sequence
of operations that can cause UAFs, and instruments code into
target programs to record which operations has been executed.
The recording is sent back to UAFL as a feedback to guide its
input generation. Our work uses typestate analysis in symbolic
execution to detect UAFs and to terminate paths unlikely or
infeasible to cause UAFs.

Like our work, Feist et al. propose to combine static analysis
with symbolic execution to find UAFs [28]. They focus on
binary code and perform static program slicing to retain
only the program slices that may lead to UAFs and then
run symbolic execution on these retained paths. Due to the
approximations used by the program slicing, some retained
program slices can be infeasible.

III. PROBLEM DEFINITION

A use-after-free (UAF) vulnerability is one of the most
common and dangerous software weaknesses. It occurs when a
previously freed pointer is inadvertently dereferenced, which
can cause detrimental consequences such as program crash,
data corruption, or code injection.

Triggering of UAF. It involves a sequence of three operations
to trigger a UAF.

1) A malloc operation allocates a memory region and returns
the address of the memory region to a pointer

2) A free operation deallocates the memory region pointed
to by the pointer

3) A use operation that dereferences the freed pointer
The three operations must occur in the above order to trigger

a UAF. We use a vulnerability in cxxfilt to illustrate that.
As listed in Figure 2, two functions are relevant to this

UAF. Function register_Btype can allocate a memory
region and use the memory region via a pointer. Function
squangle_mop_up deallocates the memory region pointed
to by a pointer and then sets the pointer to NULL. The

involved pointer btypevec is a member field of a structure
work, whose memory address is passed to these two functions
via function arguments.

To trigger the UAF, function register_Btype is first
called to allocate a memory region and set pointer btypevec
in a work structure to point to the memory region at line 20.
Then function squangle_mop_up is called and it deallo-
cates the memory region by freeing pointer btypevec at line
7 and assigns NULL to the pointer at line 10. Lastly, function
register_Btype is called again and it attempts to use the
already freed pointer btypevec at line 29, at which point a
null-pointer dereference happens.

1 void squangle mop up ( s t r u c t w o r k s t u f f *work )
2 {
3 / / f r e e
4 f r e e ( ( char *) work−>b t y p e v e c ) ;
5 work−>b t y p e v e c = NULL;
6 }
7
8 i n t r e g i s t e r B t y p e ( s t r u c t w o r k s t u f f *work )
9 {

10 i n t r e t ;
11 i f ( work−>numb >= work−>b s i z e )
12 {
13 work−>b s i z e = 5 ;
14 / / ma l l oc
15 work−>b t y p e v e c = XNEWVEC( char * , work−>b s i z e ) ;
16 }
17 r e t = work−>numb++;
18 / / u se
19 work−>b t y p e v e c [ r e t ] = NULL;
20 re turn ( r e t ) ;
21 }
22
23 i n t d e m a n g l e s i g n a t u r e ( s t r u c t w o r k s t u f f *work )
24 {
25 . . . .
26 sw i t ch ( . . . )
27 {
28 case 'Q ' :
29 break ;
30 case ' 0 ' : case ' 1 ' : case ' 2 ' :
31 / / i n d i r e c t l y c a l l s r e g i s t e r B t y p e
32 s u c c e s s = d e m a n g l e c l a s s ( work ) ;
33 . . . .
34 }
35 }

Fig. 2. A use-after-free (UAF) vulnerability in cxxfilt, a utility that
demangles C++ symbols, adapted from CVE-2016-4487.

Consequences of UAF. After a pointer is freed, a program
often sets the pointer to NULL and the memory region
pointed to by the pointer may be re-allocated for other uses.
If the pointer is set to NULL, the use operation (afterward
dereference of the pointer) is a null-pointer dereference and
will cause the program to crash, as illustrated in Figure 2. If
the pointer is not set to NULL, the dereference of the pointer
can corrupt data or lead to code injection.

Detection of UAF. To be able to detect a UAF, the three
operations involved in the UAF need to be triggered orderly.
This is particularly challenging when the three operations
occur in different functions. An offline detection mechanism



such as symbolic execution or fuzzing must not only find
the path constraints to reach these operations in different
functions, but also executes these operations in a specific order.

For the example UAF listed in Figure 2, its malloc, free,
and, use operation all have different calling contexts, i.e. call
traces. We omit the code of some functions for brevity.

The malloc operation in function register_Btype is
called through the call chain: demangle_qualified →
register_Btype.

The use operation in function squangle_mop_up, which
contains the free operation, is called through the call chain:
delete_work_stuff → squangle_mop_up.

The free operation in function register_Btype is
called through the call chain: demangle_signature →
demangle_class → register_Btype .

IV. UAFDETECT

UAFDetect detects use-after-free (UAF) vulnerabilities and
generates the inputs to trigger these vulnerabilities. In conjunc-
tion with static program analysis, UAFDetect uses symbolic
execution to run the code of a target program to detect vulnera-
bilities and generate inputs. It is specifically designed to detect
UAFs effectively and efficiently. This section demonstrates a
typical usage of UAFDetect in detecting UAFs, using a C++
symbol demangling tool cxxfilt as the target program.

To detect UAFs in cxxfilt, UAFDetect performs two
major steps. First, UAFDetect statically identifies potential
operations that can lead to UAFs. It examines the code of the
program to find relevant malloc operations, free operations,
and use operations. Second, it uses symbolic execution to run
the program. Based on the information provided by the static
analysis, the symbolic execution performs typestate analysis,
and prunes program paths that will unlikely or never reach the
operations or trigger UAFs. For each detected UAF, it produces
a concrete input for triggering the UAF.

For the code illustrated in Figure 2, UAFDetect identifies
that line 15 has a malloc operation and sets the pointer
work->btypevec to point to the allocated memory region.
It then finds a free operation for work->btypevec at line
4 and a use of work->btypevec at line 19.

With such information, UAFDetect uses symbolic execution
to run the program and conducts typestate analysis when the
execution reaches the malloc, the free, and the use.

The typestate for the pointer can be in one of three possible
states: Init, Allocated, and Deallocated. The types-
tate for a pointer is initialized to Init. When the malloc at
line 15 is invoked, UAFDetect sets the state of the typestate
to Allocated. When the free at line 4 is invoked, it sets
the state to Deallocated. When the symbolic execution
reaches the use, it checks if the typestate is Deallocated.
If so, it deems that a UAF occurs and reports the UAF.

Particularly it checks whether the malloc occurs before the
free by examining the state of the typestate when the execution
arrives at the free. If the state is not Allocated, it deems
that no malloc happens before the free and the execution
path is unlikely to cause a UAF. As a result, it prunes the

execution path. As an example of the infeasible path, it prune
the execution path when it reaches line 28 because execution
path can never call function demangle_class to reach
function register_Btype to invoke the malloc or the use.

V. DESIGN

A. Overview

UAFDetect takes the source code of a target program
as input, locates memory operations in the program, uses
symbolic execution to execute the program, and produces an
input to trigger a UAF when the UAF is found. Its symbolic
execution engine performs typestate analysis, identifies and
prunes the paths that are unlikely or infeasible to trigger UAFs,
and to detect UAFs. Figure 3 shows UAFDetect’s workflow.

The symbolic execution used by UAFDetect creates sym-
bolic input values for the target program, and systematically
executes the program paths. When the special UAF report
function is invoked by the target program, it produces concrete
input values that satisfy the constraints on the symbolic input
values. By pruning the unlikely paths and infeasible paths,
UAFDetect enables the symbolic execution to focus on the
paths that are more likely to cause UAFs so that it can
detect UAFs efficiently. When a UAF is detected, UAFDetect
generates a concrete input (exploit) to trigger the UAF.

B. Locating Memory Operations

UAFDetect uses static analysis to locate pointers and
the malloc, use, and free operations, which are collectively
called UAF-operations, performed on these pointers. For each
pointer, the static analysis starts from a malloc operation and
follows data dependency to find use and free operations. The
static analysis is a flow-sensitive and field-sensitive intra-
procedural analysis, which gathers relevant information for
each function. The static analysis takes into account pointer
aliasing and aggregate operations based on pointer aliases.

The intra-procedural analysis is invoked for all the function
in a target program. Algorithm 1 shows the algorithm for
locating memory operations. For each function, the intra-
procedural analysis searches for malloc operations to find
UAF-relevant pointers. It treats function calls to dynamic
memory allocation functions, such as malloc, calloc, and
new, as malloc operations, and locates the pointers involved
in the malloc operations.

For each pointer located in a function, the intra-procedural
analysis follows the data dependency graph of the function to
find the use and free operations on the pointer. Any access via
the pointer is deemed as a use operation. This includes the
case when a pointer is dereferenced or used as an array. Any
function call to dynamic memory deallocation functions, such
as free and delete, is deemed as a free operation.

The intra-procedural analysis takes a function and the
dependency graph for the function as input, and outputs a
mapping from the pointers that it located in a function to a
list of malloc, use, and free operations on each pointer. Each
operation is denoted by a tuple of the instruction performing
the operation and the type of the operation.
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Fig. 3. Workflow of UAFDetect.

Algorithm 1 Locating memory operations.
Input:
F : a function F
DEPENDENCY: data dependency graph for F
Output: M : a mapping from pointers to operations

procedure LOCATE MEMORY OPERATIONS
M ←∅
Worklist←∅
for instruction I ∈ F do

if IS MALLOC OPERATION(I) then
P ← TARGET(I)
Worklist←Worklist ∪ {(I, P )} ▷ Add malloc operation
M [P ]←M [P ] ∪ {(I,Malloc)}

end if
end for
while Worklist ̸= ∅ do

(J,Q)← HEAD(Worklist)
Worklist←Worklist− {(J,Q)}
for instruction K ∈ DEPENDENCY(J) do

if IS USE OPERATION(K) then ▷ Add use operation
M [Q]←M [Q] ∪ {(K,Use)}

else if IS FREE OPERATION(K) then ▷ Add free operation
M [Q]←M [Q] ∪ {(K,Free)}

else if IS ASSIGNMENT(K) then ▷ Handle pointer alias
Worklist←Worklist ∪ {(K,Q)}

end if
end for

end while
end procedure

C. Dynamic Typestate Analysis

The typestate analysis on pointers is the foundation for
UAFDetect to detect UAFs. It keeps track of the state of
the typestates for pointers, based on the operations applied on
the pointers. As described in Section II, we can detect UAFs
by checking the state of a typestate and the operation to be
performed on the typestate.

UAFDetect performs dynamic typestate analysis in its sym-
bolic execution engine. The typestate analysis is based on the
typestate defined in Figure 1. For the purpose of detecting
UAFs, the typestate has four states: Init, Allocated,
Deallocated, and Error. It also defines three operations:
malloc, use, and free. These operations can cause the typestate
to transit from one state to another state. For example, applying
a free operation when the typestate is in the Allocated state
will cause the state to transit to the Deallocated state.

For each pointer identified in the step of ”Locating Memory
Operations”, UAFDetect associates a typestate variable with
the pointer. It modifies the value of the typestate variable when

executing each UAF-related operation involving the pointer.
The modifications follow the state transit function defined
for the typestate. Based on the typestate analysis, UAFDetect
identifies and prunes unlikely paths.

D. Unlikely Paths Pruning

We define a path as an unlikely path if the path invokes
UAF-related operations in an unusual order. Our observations
show that such a path is unlikely to cause UAFs. We deem an
order of UAF-related operations as unusual if it is neither the
normal order of malloc-use-free, nor the UAF-triggering order
of malloc-use-free-use. To find unlikely paths, UAFDetect
identifies and prunes unlikely paths dynamically during the
symbolic execution of the target program. It identifies unlikely
paths by checking whether the path performs UAF-related
operations in an unusual order. When an unlikely path is
identified, it prunes the path.

One approach to find whether the operations follow an
unusual order is to check whether each operation to be
performed is defined for the current state of the typestate. If
the operation is defined for the state, we consider the operation
does not cause an unusual order. Otherwise, we consider the
operation causes an unusual order.

However, this approach would also consider the orders of
operations that can lead to some other types of errors, such
as the use of uninitialized pointer, as unusual orders. Because
UAFDetect prunes the paths leading to unusual orders, these
types of errors will not manifest when their paths are pruned.
To avoid pruning paths to other types of errors, we choose
to refine our way to find unusual paths to not identify those
kind of paths. As a result, it simplifies the check and leaves the
check on only the free operation. Because the free operation is
defined only for the Allocated state, we consider the cases
when a free operation is to be performed on a pointer that is
not in the Allocated state as causing an unusual order.

Our symbolic execution engine performs the check on
unlikely paths into a target program. One check is performed
before each free operation identified by the step of locating
memory operations. Based on the typestate analysis, the check
examines the state of the typestate associated with the pointer
on which a free operation is applied. If the state is not
Allocated, it prunes the execution path by calling the
assert function to terminate the path.

E. Infeasible Paths Pruning

An infeasible path is a path that can never cause a UAF.
We consider a path as an infeasible path if the path will never
invoke one or more of the UAF-related operations. UAFDetect
identifies infeasible paths statically and prunes infeasible paths
during the symbolic execution.

To identify infeasible paths, UAFDetect performs context-
sensitive and flow-sensitive inter-procedural reachability anal-
ysis on a target program. The analysis finds paths that cannot
reach UAF-related functions. It consists of two steps: identi-
fying UAF-related functions and labeling infeasible paths.



The first step builds a call-graph of the target program, and
then identifies functions that can directly or indirectly invoke
functions contain UAF-related operations. These functions are
called UAF-related functions. The building of the call graph
takes into account function calls via function pointers. It
conservatively considers any function whose address has been
directly used in a call, or stored to variables as potential callees
via function pointers. It then matches callers and callees by
matching function prototypes.

The second step works on each function of a target program.
It follows the function’s control flow graph (CFG) to find
program paths that can never reach UAF-related operations
directly nor indirectly via calls to UAF-related functions. For
such paths, it identifies the earliest branch on the path that
diverts the path away from invoking UAF operations. We call
this kind of branches as infeasible branches.

VI. EVALUATION

We evaluate UAFDetect on seven real world UAF vulnera-
bilities in C/C++ programs. First, we describe the environment
of our experiments. Second, we measure the effectiveness and
performance of UAFDetect on detecting the vulnerabilities.
Last, we use case studies to describe the details on how our
targeted symbolic execution works on each vulnerability.

A. Experimental Setup

We implement the prototype of UAFDetect in LLVM [39],
a compiler framework, and on top of KLEE [40], a symbolic
execution engine. We also incorporate the input preconditions
developed by SPDetect [17] in UAFDetect. All our evaluations
were performed on a 32-core 2.2GHz workstation with 128
GB memory. The workstation runs 64-bit Ubuntu 20.04.

B. Vulnerability Detection

We found real world vulnerabilities from popular online
vulnerability databases and exploit databases including CVE
- MITRE [41], BugZilla [42], and benchmarks used by
prior work [29]. We were able to reproduce seven UAF
vulnerabilities. They are from a myriad of programs, which
serve different purposes including archive repairing, image
processing, data conversion, and programming. Their sizes
range from 544 to 115,862 lines of source code. Table I shows
the information on these programs. For each program, the
column “#SLOC” is its number of C/C++ source code lines
and the column “#Bitcode” is its number of LLVM bitcode
instructions.

TABLE I
LIST OF EVALUATED PROGRAMS.

Program Type Version #SLOC #Bitcode
autotrace Image Processing 0.31.1 19,264 100,027
bzip2recover Archive Repairing 1.0.6 544 2,085
cxxfilt Programming 2.26 1,234 722,537
gifsicle Image Processing 1.90 15,156 95,989
nasm Programming 2.14 115,862 186,477
patch Programming 2.7.6 8,309 4,527
rec2csv Data Conversion 1.8 1,279 134,316

We run UAFDetect to detect vulnerabilities in each of
these programs. We use the DFS search strategy and the Z3
constraint solver. Table II lists the nine vulnerabilities that
are successfully detected by UAFDetect. The column “Type”
describes whether the vulnerability is a UAF (use-after-free) or
DF (double-free), a special case of UAF. The column “Input”
shows the type of input to each program. The column “Time”
presents the time when UAFDetect detects the first occurrence
of each vulnerability, measured in seconds.

TABLE II
LIST OF DETECTED UAF VULNERABILITIES.

Vulnerability Type Program Input Time
CVE-2017-9182 UAF autotrace BMP image 66
CVE-2016-3189 UAF bzip2recover bzip2 archive 22
CVE-2016-4487 UAF cxxfilt C++ symbol 105
gifsicle-issue-122 DF gifsicle GIF image 30
CVE-2017-10685 UAF nasm assembly program N/A
CVE-2019-20633 DF patch patch file 77
CVE-2019-6455 DF rec2csv text records 24

Similar to prior work [14], [17], we limit UAFDetect to run
on each program for a time period of 10,000 seconds. UAFDe-
tect successfully detects all but one vulnerability within the
time period and generates the inputs to reproduce these vul-
nerabilities. Overall it takes UAFDetect from 22 seconds to
105 seconds to find a UAF vulnerability.

C. Case Studies

CVE-2017-9182. The UAF vulnerability is in autotrace, a
program that converts images to vector graphics. autotrace
takes an image file as the input, and outputs a vector descrip-
tion of the image in various formats.

For a BMP image file, function ReadImage in
autotrace reads the image data from the file. It stores
the image data in dynamically allocated memory regions, but
for some image data it inadvertently deallocates the memory
regions due to pointer aliases. This causes a UAF later when
function find_outline_pixels tries to access the freed
memory regions.
autotrace supports multiple image file formats and de-

termines the image file format of an input file by examining
the content of the input file. Because the UAF only occurs
for a BMP file, UAFDetect uses the prefix input condition to
make sure that it generates a BMP file.

CVE-2016-3189. bzip2recover recovers data from bro-
ken bzip2 archives. It reads a bzip2 archive file to extract
compressed data blocks, and then writes each successfully
extracted block to a different bzip2 archive file. It uses a
dynamically allocated structure to encapsulate miscellaneous
information for each file it opens for reading or for writing.

Function bsOpenWriteStream is responsible for allo-
cating the structure for each file to be opened for writing. After
closing a file, function bsClose frees the structure. The UAF
vulnerability occurs when another function bsPutBit tries
to read some miscellaneous information in the freed structure.



One major challenge to trigger the UAF is that
bzip2recover checks the format of the input bzip2 archive
file which is expected to contain three magic numbers, a CRC
code for each compressed data block, and a CRC code for
the entire file. UAFDetect uses the prefix input condition to
ensure the symbolic input file contains the magic numbers.

CVE-2016-4487. This is a UAF vulnerability in cxxfilt,
a programming tool to demangle C++ symbols. Our example
vulnerability is adopted from it. cxxfilt takes a mangled
C++ symbol from the command line and demangles it to
regular C++ symbol.

Function register_Btype in cxxfilt dynamically
allocates an array of pointers in a structure to store the type
information embedded in a mangled a C++ symbol. The
array is associated with a size field in the same structure.
Unfortunately the size field is not set to zero when the array
is deallocated by function squangle_mop_up. This causes
a data inconsistency and can result in a UAF.

A mangled C++ symbol does not have a complex format. As
a result, UAFDetect does not need to use input precondition
to find the UAF.

gifsicle-issue-122. gifsicle is a tool for creating and
editing animated GIF image files. It takes multiple GIF files
as input and merges them into an animated GIF file. For each
GIF file, it reads the image data and store it in dynamically
allocated memory regions.

Function read_gif allocates memory regions and reads
image data into these regions. After finishing processing a
GIF file, it deallocates the memory regions. However, function
blank_frameset tries to deallocate the memory regions
again after all the input GIF files have been processed. This
causes a DF vulnerability.

Although gifsicle checks the format of GIF files,
UAFDetect does not need to use any input precondition to
find the DF. This is because a GIF file format itself does not
use any CRC code.

CVE-2017-10686. nasm is a popular assembler for x86
assembly programs. It takes an assembly program file as input
and translates the assembly program into an object code file.
The assembly syntax used by nasm supports macros.

Function pp_getline processes tokenized lines of an
assembly program. When it encounters a macro, it expands
the macro by calling function expand_mmacro, which dy-
namically allocates memory regions to store the new tokens
generated by the macro expansion. A UAF can occur when
the assembly program includes a malformed macro definition.

Finding the UAF has two major challenges. First, the input
to nasm is expected to be an assembly program and thus
needs to comply to the assembly code syntax. Second, the
UAF requires a macro defined in a specific way in the assem-
bly program. None of the input preconditions supported by
SPDetect [17] can help address these challenges. Consequently
UAFDetect is unable to find the UAF within the time limit.

CVE-2019-20633. This is a DF vulnerability in patch, a
common utility for applying source code patches. Its input

is the code difference generated by the diff utility. patch
applies the difference to source code to produce patched code.

The input to patch can consists of multiple changes that
need to be applied. patch uses function another_hunk
to process each change in the input. It allocates memory
regions for each change and deallocates them after processing
the change. A DF can occur for an input containing changes
that do not conform to the appropriate format. Interestingly,
function another_hunk has some code attempting to detect
DFs but it still misses this one.

Because patch expects the difference to contain one ore
more changes described in a specific format, UAFDetect uses
input conditions to ensure the input includes specific characters
indicating the occurrence and type of of each change.

CVE-2019-6455. This is a DF vulnerability in rec2csv, a
utility to convert plain text data records into CSV format. It
can read data records from a file or standard input, and write
them in CSV format to standard output.
rec2csv allows the plain text data records to include

comment lines. Function rec_parse_rset parses the data
records and uses dynamically allocated memory regions to
store the comments. When a malformed comment exists in
the input, function rec_parse_rset can attempt to free
an already freed memory region storing the comment.

As the input format is simple, rec2csv does not perform
complicated format check. UAFDetect can find the DF without
using any input precondition.

VII. CONCLUSION

We present our approach that fuses typestate analysis with
symbolic execution for finding use-after-free (UAF) vulnera-
bilities. The approach, called UAFDetect, uses symbolic exe-
cution to run target programs and performs typetate analysis
in symbolic execution to direct program executions toward
triggering UAFs. We develop two techniques to boost its effi-
ciency in finding UAFs: unlikely path pruning and infeasible
path pruning. Before executing a program, UAFDetect uses
static analysis on the program to locate the information on
pointers and operations relevant to UAFs, and the paths that
cannot reach these operations. During symbolic execution, the
two techniques use this information and the results of typestate
analysis to prune paths that are unlikely or infeasible to
trigger UAFs. The evaluation on our prototype shows that our
approach can find real world UAF vulnerabilities efficiently.
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