
EAI Endorsed Transactions Preprint Research Article/Editorial

Mitigating Vulnerabilities in Closed Source Software
Zhen Huang1,∗, Gang Tan2, Xiaowei Yu1

1School of Computing, DePaul University, Chicago, USA
2School of EECS, Pennsylvania State University, University Park, USA

Abstract

Many techniques have been proposed to harden programs with protection mechanisms to defend against
vulnerability exploits. Unfortunately the vast majority of them cannot be applied to closed source software
because they require access to program source code. This paper presents our work on automatically hardening
binary code with security workarounds, a protection mechanism that prevents vulnerabilities from being
triggered by disabling vulnerable code. By working solely with binary code, our approach is applicable
to closed source software. To automatically synthesize security workarounds, we develop binary program
analysis techniques to identify existing error handling code in binary code, synthesize security workarounds
in the form of binary code, and instrument security workarounds into binary programs. We designed and
implemented a prototype or our approach for Windows and Linux binary programs. Our evaluation shows
that our approach can apply security workarounds to an average of 69.3% of program code and the security
workarounds successfully prevents exploits to trigger real-world vulnerabilities.

Received on XXXX; accepted on XXXX; published on XXXX

Keywords: Software vulnerability, vulnerability mitigation, program analysis, binary rewriting

Copyright © 2022 Zhen Huang et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so
long as the original work is properly cited.

doi:10.4108/XX.X.X.XX

1. Introduction
There is a surge of software vulnerabilities in
recent years. For the last five years, the number of
publicly disclosed vulnerabilities rises by an average
of 8% annually, based on the data from popular
vulnerability databases [1, 2]. Many techniques have
been developed to detect vulnerabilities [3–8], but
patching vulnerabilities is a non-trivial task and can
take considerable amount of time and effort. Prior
study has shown that the time between the discovery
of vulnerabilities and the release of the patch for
the vulnerabilities, i.e. the pre-patch windows, is 52
days on average [9]. which allow adversaries to exploit
vulnerabilities before patches are created and applied.
Because pre-patch windows are mainly caused by the
inevitable time and effort required to manually analyze
vulnerabilities, then create and test patches for the
vulnerabilities, it is unrealistic to expect pre-patch
windows can be reduced dramatically or eliminated
unless automated patch generation [10] is widely
adopted.

∗Corresponding author. Email: zhen.huang@depaul.edu

In the absence of patches, many techniques have
been proposed to harden applications to defend
against vulnerability exploits. The level of security
guarantees that they provide is usually inversely
proportional to the extent of the information required
for target applications and the cost of performance
or functionality loss. The vast majority of these
tools require the access to the source code of target
applications and aim to protect applications without
any functionality loss [11–14]. Unfortunately they
cannot be applied to closed source software for which
the source code is unavailable and they usually cause
high performance overhead. As a result, it is difficult
for users to adopt them in practice.

Recently Security Workaround for Rapid Response
(SWRR) is proposed to harden applications with
negligible or no performance overhead with the cost
of little or minor functionality loss [9]. Similar to
the commonly used configuration workaround [15–
18], SWRRs sacrifice certain functionality to mitigate
vulnerabilities rapidly before patches are released. The
adoption of configuration workaround shows that on
many occasions users are willing to exchange minor
functionality loss for security.

1
EAI Endorsed Transactions Preprint

https://creativecommons.org/licenses/by/4.0/
mailto:<zhen.huang@depaul.edu>

Z. Huang, G. Tan, X. Yu

While the SWRR is a promising solution to rapidly
mitigate vulnerabilities, it is designed and generated
in the form of source code and instrumented into the
source code of target applications [9]. Thus it can be
used only on open-sourced applications or by software
vendors who have access to source code.

This paper presents an approach called RVM that
applies SWRRs directly to binary code in order to
address the limitation. RVM automatically generates
SWRRs in the form of binary code and instruments
them to the binary code of a target application
without access to the source code of the application.
This enables regular users to use RVM to mitigate
vulnerabilities swiftly in closed source applications.

To apply SWRRs to binary code, RVM faces two major
challenges: 1) identifying error-handling code in binary
code, and 2) synthesizing SWRRs as binary code and
instrumenting them into the existing binary code of
target applications.

First, one of the major reasons for the wide adoption
of configuration workarounds in practice is unobtrusive-
ness, which means that only the functionality relevant
to vulnerable functions is affected by configuration
workarounds. SWRRs rely on the use of existing error-
handling code of a target application to achieve similar
unobtrusiveness offered by configuration workarounds.
To generate SWRRs, Talos uses heuristics and analyzes
the error propagation in the source code of target
applications to identify existing error-handing code [9].
However, it is challenging to use the same approach
to finding existing error-handling code in binary code.
Section 3.1 and Section 3.2 discuss this challenge in
details.

Second, it requires more considerations to generate
SWRRs in the form of binary code and to instrument
SWRRs into binary code than in the form of source
code, such as calling conventions, the location in binary
executable files at which SWRRs are instrumented,
and whether the instrumentation requires relocating
other existing code and data. Section 3.3 discusses the
challenge in more details.

To address the first challenge, RVM uses a novel
approach in finding error-handling code in binary
code and adopts static program analysis specifically
designed for binary code. Particularly it mines API
error specifications automatically from online API
documentations, then follows error propagation in
target applications to find error-handling code. It
conducts program analysis on VEX IR code lifted from
binary code.

RVM addresses the second challenge by generating
SWRRs using code cloning and finding the location of
instrumentation using an approach oblivious to binary
executable file formats.

In summary, this paper make the following major
contributions:

• We propose an approach to finding error-handling
code in existing applications by mining API
error specifications from API documentations and
leveraging error propagation.

• We designed and implemented a prototype of
RVM that can apply SWRRs in the form binary
code on x86-64 Windows and Linux applications.
The code for the prototype is available at https:
//gitlab.com/zhenhuang/rvm.git.

• We evaluated the coverage of SWRRs produced
by our prototype through a case study on using
SWRRs to mitigate real-world vulnerabilities, and
also evaluated the performance of our prototype.

This paper is an extended version of our workshop
paper [19]. In this paper, we mainly added the listing
of two algorithms, included more discussions, and
extended the related work with recent papers. It is
organized as follows. We discuss the background and
related work in Section 2. We present the research
problem and challenges in Section 3. A typical usage
scenario of our approach is described in Section 4.
The design and implementation of our approach is
presented in Section 5. We discuss the limitations in
Section 6. Lastly we evaluate our approach in Section 7
and conclude in Section 8.

2. Background and Related Work
2.1. SWRR
Security Workaround for Rapid Response (SWRR) is a
mechanism proposed to mitigate software vulnerabili-
ties rapidly[9]. It is a simple code snippet instrumented
into a target program to prevent a vulnerability from
being triggered. Because it disallows the execution of
the vulnerable code at the granularity of functions, it
can prevent any inputs including polymorphic inputs
designed to trigger the vulnerability, and thus stops
any form of further attacks such as ROP[20], albeit
at the cost of losing the functionality provided by the
instrumented function.

We illustrate how an SWRR mitigates a vulnerability
using an example vulnerability. Listing 1 presents
the vulnerable code adopted from a real-world
vulnerability CVE-2011-4362 in lighttpd, a popular
web server. The vulnerable function base64_decode

decodes an input base64 string using a lookup table
base64_reverse_table with the input string as the
index. Owing to the lack of a proper check on whether
the input string can be used as valid index, an adversary
can craft malicious input strings to cause out-of-
bounds table lookup and thus abnormal termination of
lighttpd.

The design of SWRR highlights two key features:
simplicity and unobtrusiveness. First, as shown in

2
EAI Endorsed Transactions Preprint

https://gitlab.com/zhenhuang/rvm.git
https://gitlab.com/zhenhuang/rvm.git

Mitigating Vulnerabilities in Closed Source Software

char* base64_decode(char *out,char *in)

{

char *result = out;

int ch, i = 0, j = 0;

...

for (...) {

ch = in[i];

ch = base64_reverse_table[ch];

...

result[j] = ch;

}

if (ch == base64_pad && i % 4 == 0)

return NULL;

return result;

}

// returns 0 on failure; 1 on success

int http_auth_basic_check(...)

{

...

if (!base64_decode(...)) {

log_error_write("...");

return 0;

}

...

return 1;

}

Figure 1. Example vulnerability, adopted from CVE-2011-4362
in lighttpd.

Figure 2, an SWRR is merely a simple return
statement instrumented to the beginning of function
base64_decode so that no vulnerable code will be
executed and thereby no inputs can trigger out-of-
bounds lookup of table base64_reverse_table. The
SWRR effectively neutralizes the vulnerability by
disabling lighttpd’s base64 decoding.

Second, by returning a NULL, the SWRR achieves
unobtrusiveness by indicating an error to the caller
function http_auth_basic_check, so that lighttpd

can properly handle this error. Essentially this leads
to the rejection of any HTTP basic authentication that
requires base64 decoding. However, other functionality
is intact so lighttpd can continue to process other
forms of authentications.

Because SWRRs are simple and require only the
information about which return values should be
used to indicate an error, they can be mechanically
synthesized and instrumented into a target program
and save the time and effort of human developers.
As a result, they can dramatically reduce the pre-
patch window and used as a rapid response to mitigate
software vulnerabilities [9].

unsigned char* base64_decode(...,char *in)

{

/* SWRR inserted at top of function */

return NULL;

/* original function body */

...

}

Figure 2. An SWRR instrumented into the vulnerable
base64_decode function listed in Figure 1.

2.2. Defending Against Exploits

Many approaches [13, 21–25] have been proposed to
protect programs from malicious attacks such as con-
trol flow hijacking, malicious web browser extensions,
Return-Oriented Programming (ROP) [20] and Coun-
terfeit Object-oriented Programming (COOP) [26].
These approaches prevent attackers from compromis-
ing programs containing vulnerabilities.

Some of them implement various forms of Software-
based Fault Isolation (SFI) [27, 28] or Control Flow
Integrity (CFI) [29] on binary code. Among them,
Lockdown enforces CFI on ELF dynamic shared
objects and rewrites binaries using Dynamic Binary
Instrumentation (DBI) [13]. NaCl adopts SFI and
provides an execution sandbox for native binary code,
executed as part of web browser extensions [21].

CFI and SFI can provide comprehensive protection
against different types of exploits. However, they incur
from 5 to 20% performance overhead. In contrast,
SWRR instrumented by RVM incurs negligible or no
performance overhead.

To address the rising Spectre attack, which exploits
the side-effect of speculative executions, oo7 [30]
models speculative executions with taint analysis
and uses static binary program analysis to identify
vulnerable code fragments. It then instruments fence
instructions into vulnerable code to mitigate the risk of
Spectre attack.

Another form of binary code hardening is code
randomization. To hinder ROP attacks, SmashGad-
gets [23] randomizes binary code using techniques such
as atomic instruction substitution, instruction reorder,
and register reassignment; as a result, program instruc-
tions intended to be used as gadgets [20] for these
attacks can no longer be used. While code randomiza-
tion is effective in thwarting ROP attacks, it does not
prevent other types of exploits such as regular stack
buffer overflow and control flow hijacking [31].

While SWRRs neutralize vulnerabilities in user
applications, Confine [32] neutralizes kernel vulnera-
bilities by restricting the use of system calls. It uses

3
EAI Endorsed Transactions Preprint

Z. Huang, G. Tan, X. Yu

dynamic analysis to identify the list of applications run-
ning in a container image and leverages static analysis
to extract the required system calls for each running
application and its dependencies. By enforcing system
call restrictions, it essentially prevents kernel vulnera-
bilities from being triggered by attacks to containers.

Compared with existing binary hardening tools,
RVM instruments SWRRs that are designed to be
simple and effective in preventing vulnerabilities from
being triggered by disabling the execution of entire
vulnerable functions. RVM gives users a choice between
security protection and minor functionality loss in
response to severe vulnerabilities.

2.3. Patching Binary Code
While software vendors usually release source code
patches for vulnerabilities, users may need to patch
binary code directly in many scenarios. First, using hot
patches that can be applied dynamically into currently
running binary programs is preferred for long-running
systems. Second, re-compiling program code is required
after applying source code patches, but the build
configuration for the compilation may not be readily
available.

To enable source code patches to be used for
hot patching, VULMET [25] automatically generates
hot patches from source code patches. It transforms
source code patches into semantically-equivalent hot
patches by finding the weakest precondition of official
patches. Instead of directly generating binary hot
patches, VULMET inserts the precondition constraints
representing hot patches into source code templates
and then uses a compiler to compile them into binary
executables.

OSSPatcher [33] analyzes source code patches to
identify vulnerable functions and the build configu-
ration required for compiling the source code patches
for specific target binary programs. It then finds the
matching functions in binary programs, and injects the
compiled source code patches into these functions at
runtime. To match binary code functions with source
code functions, it uses semantic features, similar to
those used by prior work [34], and function summaries
obtained from symbolic execution.

RVM uses binary rewriting to insert SWRRs into
binary programs statically. Due to the simpicity of
SWRRs, it would be straightforward to use SWRRs as
hot patches.

2.4. Inferring Error-Handling Code
Inferring error-handling code in programs has mainly
two purposes. First, knowing the locations of error-
handling code allows tools designed to find bugs in
error-handling code to focus on these locations[35, 36,
36, 37]. Second, error-handling code indicates error

return values that can be used to synthesize SWRRs for
security[9].

To infer error-handling code, most of these tools
rely on information about the error return values
of API functions called by a target program. They
either make some unsound assumptions on error return
values, such as that all non-zero return values are error
return values as long as zero is also one of the return
value[36], or depend on other tools or documentations
to provide such information[35, 37]. Particularly LFI
works on binary code. However, it does not perform
interprocedural error propagation like RVM does.

In contrast, APEx uses characteristics including the
number of statements, function calls, and paths to
differentiate error-handling code from other code [38].
Furthermore, Talos adopts a two phase approach [9].
In the first phase, it relies on heuristics such as “error-
handling code often calls error logging functions before
returns a constant” to generate an initial list of error
return values. In the second phase, it follows error
propagation in the target program to identify other
error return values.

3. Problem Description and Challenges
As discussed in Section 2.1, SWRRs is a simple, unob-
trusive, and effective mechanism to rapidly mitigate
software vulnerabilities. Talos has demonstrated how
to automatically synthesize and instrument SWRRs for
C/C++ programs [9]. However, it is challenging to
apply SWRRs directly to binary code.

In order to achieve unobtrusiveness, i.e. not affecting
functionality irrelevant to the vulnerable function, an
SWRR needs to return an error value to invoke existing
error handling code to reject the input that triggers
the corresponding vulnerability, and to recover from
the error in order to be able to process the next input.
For example, the SWRR for vulnerability CVE-2011-
4362 in lighttpd needs to return a NULL from the
vulnerable function base64_decode so that its caller
would be able to propagate the error and eventually
lighttpd would reject the request that triggers the
execution of the vulnerable function.

To identify error return values that can be used
by SWRRs, Talos finds existing error handling code
of a target program by using five heuristics in static
program analysis. It first uses two main heuristics, error-
logging function and NULL return, to find a initial set
of functions that contain error-handling code, then uses
two extension heuristics to identify error propagation
in the program and thus finds error-handling code in
other functions based on the initial set of functions.
While Talos achieves success on its coverage on open-
sourced programs, we find using these heuristics on
close-sourced program pose new challenges.

4
EAI Endorsed Transactions Preprint

Mitigating Vulnerabilities in Closed Source Software

3.1. Main Heuristics
The main heuristics play a critical role for the success
of Talos, because they not only achieve a significant
coverage by themselves but also form the basis for other
heuristics. However, we find that the main heuristics
have two major limitations when applying to close-
sourced programs.

First, many close-sourced programs, especially those
designed only for Windows, make little use of error-
logging functions. One possible reason is that Windows
API functions follow a well-established standard set of
error return values[39] and thus examining a return
value is sufficient to reveal what kind of error occurs,
without the need of logging the error. As a result, the
error-logging function heuristic does not find much
error-handling code for close-sourced programs on
Windows. Second, returning a NULL from a function
that normally returns a valid pointer usually indicates
an error occurred. So an SWRR might return NULL
as an error return value for a function that returns a
pointer. However, it is non-trivial to decide whether a
function returns a pointer without the type information
of the program. We will describe how we address these
limitations in Section 5.5 and Section 5.2.

3.2. Extension Heuristics
The extension heuristics rely on data flow analy-
sis to identify error propagation in a target pro-
gram. For example, the error raised in function
base64_decode is propagated to its caller function
http_auth_basic_check via the return of NULL at line
12, and further propagated to the caller function of
http_auth_basic_check via the return of 0 at line 21,
as shown in Listing 1.

To recognize such error propagation, a data flow
analysis needs to follow exactly how the return value
from base64_decode is checked in its caller at line
19 and what constant values are returned by its caller
when the check succeeds and when the check fails,
respectively.

However, data flow analysis on binary code in general
is more challenging than on source code due to compiler
optimization, mixed use of registers and variables, and
lack of type information. We will describe our solution
to address this challenge in Section 5.3, Section 5.4, and
Section 5.6.

3.3. Generating and Instrumenting SWRRs
An SWRR in the form of source code is simply a
C/C++ return statement. But such a statement is
implemented as different instructions for different
architectures. Even for the same architecture, different
calling conventions can result in different instructions.
For example, stdcall convention dictates that caller

1 int http_auth_basic_check(...) {

2 400684: push %rbp

3 400685: mov %rsp,%rbp

4 400688: sub $0x20,%rsp

5

6 4006b6: callq 400672 <base64_decode>

7 4006bb: test %rax,%rax

8 4006be: jne 4006dd

9 4006c0: mov $0x400798,%edi

10 4006c5: callq 400646 <log_error_write>

11

12 4006d6: mov $0x0,%eax

13 4006db: jmp 4006e2

14 4006dd: mov $0x1,%eax

15 4006e2: leaveq

16 4006e3: retq

Figure 3. Assembly code compiled from function
http_auth_basic_check in Figure 1.

functions allocate stack space for the call and callee
functions clean up the allocation, while _cdecl

convention dictates the opposite. An SWRR for
these two different calling conventions must behave
differently to follow the calling conventions, and thus
RVM must generate different instructions accordingly.
Therefore generating SWRRs in the form of binary code
needs to consider the target architecture and the calling
convention.

Instrumenting an SWRR in the form of source code
is simply inserting the source code of the SWRR at the
beginning of the source code of a target function; so
only the starting source code line of the function is
required. However, instrumenting an SWRR in binary
code requires knowing the location of the function in
binary code, which depends on the format of the binary
code. We describe how our solution generates SWRRs
in the form of binay code and instruments SWRRs in
binary code in Section 5.8 and Section 5.9, respectively.

4. RVM

We design an approach called RVM (Rapid Vulnerabil-
ity Mitigation) to address the challenges described in
Section 3. In this section, we describe a typical usage
scenario of RVM.

RVM is designed to be used by end-users of a tar-
get program to rapidly mitigate a known but not yet
patched vulnerability in the target program. To illus-
trate its usage, we use a real-world vulnerability CVE-
2011-4362 in function base64_decode of lighttpd web
server, which is presented in Listing 1 .

When a user of lighttpd knows that vulnerability
CVE-2011-4362 in function base64_decode exists in

5
EAI Endorsed Transactions Preprint

Z. Huang, G. Tan, X. Yu

Program

Generating
SWRR

Locating Error
Propagation

Identifying
Constant

Return Values

Finding Calls
Followed by

Constant
Return

Inserting
SWRR

①

②

③ ④

API
Document

Debug
Symbols

Mining API
Error

Specifications

Identifying
Function

Return Types

Finding
Error-Handling

Code

Figure 4. Workflow of RVM: each rounded rectangle represents
a step in RVM; each circled number denotes a phase that consists
of one or more steps underneath the circled number; dotted arrows
denote input data, while solid arrows denote the order of steps.

her version of httpd, from the security notice of the
vendor of lighttpd [16], she may have several choices.

First, she can download the official source code patch,
apply it to the source code of lighttpd, build the source
code, and install the newly built binary. This requires
that she understands how to apply the source code
patch and build lighttpd from the source code.

Second, she can apply the configuration workaround
disclosed in the security notice [16] by disabling the
mod_auth module in lighttpd, in order to mitigate
the vulnerability. Unfortunately her lighttpd will no
longer be able to use any form of HTTP authentication
once the mod_auth module is disabled.

Third, she can wait for her OS vendor to issue a
patched lighttpd as an OS update, if she is unable to
follow the first choice and the second choice. But this
can take a long time. As a matter of fact, the vendor
of RedHat Linux applied the patch to the lighttpd

shipped with the OS six months after the source code
patch was released [40].

Last, she can run RVM with the vulnerable function
name, base64_decode, and the location of the binary
code of lighttpd, to automatically generate an SWRR
for this function and to apply the SWRR to the
binary code of her lighttpd. After being applied, this
SWRR mitigates the vulnerability and only disables the
basic HTTP authentication, which depends on base64
decoding; other forms of HTTP authentications can still
be used.

Compared with other choices, RVM is a solution that
offers the benefits of rapid response, easy-to-use, and
unobtrusiveness together, which are desirable in most
situations.

5. Design and Implementation

5.1. Overview
RVM generates an SWRR in binary code for a target
program and inserts the SWRR into the target program
in four phases, as shown in Figure 4.

The first phase takes the binary code of a program as
input, and is made up of four steps:

• identifying function return types – outputs the
return type for functions in the program, whose
details are described in Section 5.2

• identifying constant return values – outputs con-
stant function return values, whose details are
described in in Section 5.3

• finding calls followed by constant return – outputs a
list of function call that are followed by a return
of a constant value, referred to as constant returns,
whose details are described in Section 5.4

• mining API error specifications – mines API
documentation to find API error specifications,
i.e. error return values for API functions, whose
details are described in Section 5.5

The second phase finds error return values for
functions in the target program. It uses several
heuristics to find error-handling code in a target
program and takes the following information as input.

• Constant values returned by every function in the
program

• Function calls that are followed by a return of a
constant value, and each of these function calls
and its corresponding return must be guarded by
the same condition

• API documentation that describes error return
values for API functions

• Debug symbols that include the name and entry
address for every function in the program

Most of the above information is prepared by the first
phase. The second phase outputs the constant values
used as error return values for functions in the program.
It consists of two steps: locating error propagation and
finding error-handling code, which will be described in
details in Section 5.6 and Section 5.7, respectively.

The third phase generates an SWRR. It takes as input
the name of the vulnerable function and the error
return values for functions in the program, which is
the output of the second phase, synthesizes an SWRR
for the function and outputs the SWRR along with
the entry address of the function. The name of the
vulnerable function can usually be found in the CVE
report or bug report of a vulnerability[9]. This phase
contains the step of generating SWRRs. We describe it in
more details in Setion 5.8.

6
EAI Endorsed Transactions Preprint

Mitigating Vulnerabilities in Closed Source Software

The fourth phase takes the entry address of the
vulnerable function and the SWRR generated in the
third phase as input, and outputs a modified binary
code of the program with the SWRR instrumented. This
phase includes one step: inserting SWRRs. We describe
it in details in Setion 5.9.

We base RVM on angr[41], a static analysis
framework for binary code, and Talos[9, 42], a tool
generating and instrumenting SWRRs for C/C++
programs. Talos is implemented as a standalone
frontend that analyzes LLVM IR code generated
from C/C++ source code, and a backend that
generates SWRRs in the form of C/C++ source code,
and instruments SWRRs into C/C++ programs. We
implement the steps in phase 1 that analyzes binary
code using angr as a new frontend for Talos, and extend
the backend of Talos to implement the steps in all other
phases to generate SWRRs in the form of binary code
and instrument SWRRs into binary code.

Becaue RVM works on VEX IR code[43] lifted by angr
from binary code, RVM can be used for binary code
of all the architectures supported by angr, including
32-bit and 64-bit versions of ARM, MIPS, PPC, and
x86. However, we use only the 64-bit x86 (x86-64)
architecture and assembly code in this paper for ease
of description.

5.2. Identifying Function Return Types

To locate error propagation in a target program, RVM
requires information on which functions have a pointer
return value, e.g. char *. For programs with source
code, function return types can be found in function
prototype declarations. However, stripped binary code
does not have such information.

RVM takes advantage of the information on API
function prototypes mined from API documentation.
It follows call chains to identify function return
types, starting with return types of API functions and
propagating these return types to callers of these API
functions in the program.

The propagation maintains a list of function return
types, which is initially filled with API function return
types, and performs an iteration on every function of
the program whose return type is unknown. In each
iteration, it finds a function that has a pointer return
type if its return value is derived from the return value
of a call to another function that has a pointer return
type.

Whenever the return type of a new function has been
found, the propagation adds the function return type
to the list and starts a new iteration. The propagation
terminates when no new function return types can be
found in an iteration.

5.3. Finding Constant Return Values
This step finds constant return values for functions in
a target program. These constant return values are then
used to find existing error-handling code in the target
program. It takes the CFG and the VEX IR code of the
program as input, both of which are generated by angr.

To find constant return values, we need to locate
where in the code a return value is assigned, which we
refer to as an assignment site, and where in the code a
return value is passed back to the caller of a function,
which we refer to as a return site. We also need to
distinguish the case when a constant value is assigned
as a return value and the case when a non-constant
value is assigned.

It is common for a function to have more than one
return value. The binary code of a function is often
organized in a way to save the number of return instruc-
tions. For example, function http_auth_basic_check

can return 0 or 1, as shown in Listing 3. It has one
return site, a single ret instruction at line 16, and two
assignment sites, two mov instructions with register eax
as destination at line 12 and line 14, respectively.

To find out which constant values are used as
return values, RVM links each return site with its
corresponding assignment sites using a backward
intraprocedural static analysis. Each return site can be
trivially identified by looking for ret instructions. Each
assignment site is defined as the reaching definition
of register rax, i.e. the last assignment to register rax

preceding a return site in the control flow.
RVM identifies constant-value operands used in

assignment sites as return values. Because a function
may assign a constant value to a variable and then use
the variable as its return value, RVM uses the reaching
definition analysis to find if a return value stored in a
variable is indeed a constant.

The challenge of the reaching definition analysis is
to handle the case when a variable is allocated in
the memory instead of a CPU register. To avoid the
overhead of pointer alias analysis, we choose to focus on
local variables allocated in the activation record [44] for
each function call, because each local variable is usually
referenced by a constant offset to the memory address
of the activation record. For example, a local variable
may be referenced as -8(%rbp) on an x86-64 CPU, for
which the register rbp points to the memory address of
the activation record used by a function call.

Algorithm 1 shows how we choose the instructions
that update or access local variables, which are either
allocated as registers or in the activation record, as the
definitions in the gen set [44] for the reaching definition
analysis.

Our algorithm for finding constant return values is
shown in Algorithm 2. For each function in the target
program, it outputs a list of constant return sites, each

7
EAI Endorsed Transactions Preprint

Z. Huang, G. Tan, X. Yu

of which is represented as a pair of a return site and
its associated assignment site. Each pair is denoted
as a tuple of (return_address, assignment_address,
return_value).

Algorithm 1 Creating the gen set for a function.
Input: F: a function F
Output: G: the gen set for F
procedure create_gen_set

G←∅
for basicblock B ∈ F do

for instruction I ∈ B do
▷ Transform I into dest = OP (src1, . . . , srcn)
d ←transform(I)
for operand r ∈ d do

if is_reg(r) ∨ is_local_var(r) then
GEN [B]←GEN [B] ∪ {d}
break

end if
end for

end for
end for

end procedure

Algorithm 2 Finding constant return values.
Input: F: a function F
Output: ConstRet: the set of constant returns in F

procedure find_const_ret

ConstRet ←∅
▷ G, K are the gen and kill sets of F respectively
G←create_gen_set(F)
K ←create_kill_set(F)
IN ,OUT ←reaching_definition(F,G, K)
for basicblock B ∈ Exit(F) do

for definition d ∈ OUT [B] do
▷ Get the left-hand side of d
l ←get_lhs(d)
if is_return_value(l) then

▷ Get the right-hand side of d
v ←get_rhs(d)
if is_constant(v) then

ConstRet ←ConstRet ∪ {(B, d, v)}
end if

end if
end for

end for
end procedure

We illustrate how the step works by using the
example function http_auth_basic_check in Figure 3.
This step first identifies that the function has one return
site at line 16. It then checks if there is any assignment
site in the same basic block containing line 16 and it
finds that line 14 is an assignment site, because the

mov instruction at line 14 assigns a constant value 1

to register eax. After that, it iterates through all the
predecessor of the basic block containing the return site
in the control flow graph, and checks if there is any
assignment site in each predecessor. When it checks the
predecessor starting at line 10, it finds that line 12 is an
assignment site that assigns constant 0 to register eax.

At last, it outputs a list of constant return
sites that includes (0x4006e3, 0x4006d6, 0) and
(0x4006e3, 0x4006dd, 1) for the example function
http_auth_basic_check.

5.4. Finding Calls Followed by Constant Returns
This step finds function calls that are immediately
followed by returns of constant values. It takes the list
of pairs of return site and assignment site generated
from the last step as input, and outputs a list of function
calls followed by constant returns.

We consider that a function call is followed by
an assignment site if two conditions are satisfied: 1)
the basic block containing the assignment site post-
dominates the basic block containing the function call
and 2) the two basic blocks have the same control
dependency. We define two basic blocks having the
same control dependency if they are control dependent
on the same condition check and they are on the
same branch following the check. And we exclude
control dependency introduced by loop conditions from
consideration.

Line 20 and line 21 in Listing 1 are an example of
a function followed by a constant return, because the
two lines are control dependent on the condition check
on line 19 and they are on the if branch following the
condition check.

For a given function, RVM first finds the function’s
assignment sites from the list of pairs of return sites
and assignment sites. It then marks each of the func-
tion’s assignment site with the control dependency of
the assignment site. After that, it iterates through all
the function calls in this function and checks if the
function call is control-dependent and, if so, whether
the function call is post-dominated by any one of
the assignment sites that has the same control depen-
dency. If it finds a function call followed by a constant
return, it adds a tuple of (function_call_address,
assignment_address, control_dependency) to its out-
put list.

For example, this step would check the func-
tion call at line 6 and at line 10 for function
http_auth_basic_check in Listing 3. Because the func-
tion call at line 6 is not control dependent on any
condition checks, it excludes the function call from
further consideration. For the function call at line 10,
it finds that 1) the function call is control dependent
on the condition check at line 7, 2) the assignment

8
EAI Endorsed Transactions Preprint

Mitigating Vulnerabilities in Closed Source Software

site at line 12 post-dominates the function call, 3) the
assignment site is also control dependent on line 7, and
4) the function call and the assignment site are on the
same branch following line 7.

As a result, this step outputs a list for function
http_auth_basic_check that contains only one func-
tion followed by a constant return denoted as a tuple
(0x4006c5, 0x4006d6, 0x4006bb).

5.5. Mining API Error Specifications
As we discussed in Section 3, programs running on
Windows do not use error-logging functions as much
as open-sourced programs. As a result, we cannot rely
on calls to error-logging functions to identify an initial
set of functions that have error-handling code for binary
code.

To find an alternative approach to identify such
initial set of functions, we conducted an informal
analysis of Windows programs and libraries to study
their error-handling code. We find that they make
intense use of Windows API functions and they usually
check whether an error occurred by examining the
return value of calls to these API functions, if these
functions have return values. By studying the official
documentation for Windows API functions, we find
that the vast majority of them can return an error
value. And they follow a standard set of error return
values, called system error codes [39]. We also find that
similarly Linux programs and libraries rely heavily on
OS system calls and API functions implemented by
common libraries such as libc, both of which have
official documentations.

Note that previous work has also considered using
documented error return values of API functions,
often called an error specification, to find error-handling
code. Some existing work [35, 37] relies entirely on
an error specification provided as input. However,
as far as we are aware, we are the first to mine
API specifications from API documentation, and then
uses error propagation to identify error return values
defined in a program, particularly in binary code.

Because Windows API documentations are com-
monly posted online, we developed a web crawler
to crawl Windows API documentation websites and
mine API error specifications. The crawler is built on
scrapy[45]. For our prototype of RVM, our crawler
supports Microsoft Windows API documentation [46].

In contrast, Linux systems usually deploy API
documentations as man pages on users’ computers.
These man pages are usually stored in compressed
format on the file system and only temporarily
uncompressed when an user views them. To mine
Linux API documentation, we developed a simple text
analysis tool that decompress each man page and
searches for documentation on API functions.

We describe our results on mining Windows and
Linux API specifications in Section 7.1.

Because API documentations are usually written in
respect to source code, using it on binary code requires
to match functions in the binary code with those
described in the documentation. We note that the goal
of RVM is to harden user applications, and the fact that
it is a common practice to ship debug symbols for not
only user applications but also even an entire OS such as
Windows and different flavors of Linux [47–49]. Some
existing binary hardening tools such as Lockdown [13]
and REINS [22] also rely on debug symbols. We also
note that we only require the debug symbols to get
the mapping from function names to entry addresses,
and we could switch to a different approach to get this
mapping without relying on debug symbols.

5.6. Locating Error Propagation
Following error propagation to find error return values
is critical for the coverage of SWRRs[9]. As a basis for
the step of finding error-handling code, this step takes
the CFG and the VEX IR code for the target program
as input, and outputs information on how error is
propagated.

It differentiates two ways of propagating error return
values: direct propagation and translated propagation. For
the former, it outputs the list of function calls whose
return value is directly propagated. For the latter, it
outputs not only the list of function calls whose return
value is translated before being propagated but also the
way of the translations.

Direct propagation. A function can make a function
call and simply use the return value of the function
call as its own return value. In this case, the function
making the function call would have the same error
return values as the callee function of the function
call. One example is a return statement such as
return(foo()), in which the return value of the call
to foo is directly used as the return value of the caller
function.

This step identifies direct propagation by looking
for a function call and a following return, between
which there is no modification of the function return
value. The way to modify the function return value
is dependent on the ABI used by the program. For
example, register rax is commonly used as the function
return value for x86-64; so in this architecture a
modification of the return value is defined as a call to
a function that has its own return value, i.e. not a void

function, or a direct modification of register rax.
Similar to the two conditions used to find calls

followed by constant returns, described in Section 5.4,
this step determines that a direct propagation must
satisfy three conditions: 1) the basic block containing
a return site post-dominates the basic block containing

9
EAI Endorsed Transactions Preprint

Z. Huang, G. Tan, X. Yu

a function call, 2) the two basic blocks have the same
control dependency, and 3) there is no modification to
the function return value on the path from the function
call to the return site. Note that a void function might
also satisfy such conditions. But this will not affect
finding error-handling code, because any return value
propagation would stop at a void function.

Translated propagation. A function can “translate” the
return value of a function call into a different value and
use it as its own return value. A translation consists of
two actions: 1) a conditional check on the return value
of a function call, and 2) a return statement that returns
a constant value on one of the branches guarded by the
conditional check. As described in Section 5.3, we refer
to the latter as a constant return site.

One example of such translation occurs in function
http_auth_basic_check in Listing 1, which translates
the return value NULL from the call to base64_decode

into 0. The example translation consists the conditional
check on line 19 and a return of constant 0 on line 21.
Because the step of identifying constant return values
already takes care of outputting constant return sites
including line 21, this step only needs to output the
conditional check of the return value of the function call
at line 19. Particularly its output includes the condition
used in the conditional check.

It defines a conditional check on the return value
of a function as two actions: a function call and a
following conditional check on the return value of the
function call. Identifying such conditional checks poses
the following challenges particularly for binary code:

1. the return value can be propagated to a series of
local variables, on the last of which the check is
performed;

2. there are various ways to store a local variable,
such as in a register or on the stack;

3. the check of the return value can be performed
against a constant value or a local variable that
contains a constant value;

4. there are various ways to implement the same
check in binary instructions, e.g. checking if a
return value is zero can be implemented in several
ways such as test rax, rax and or rax, rax on
x86-64;

5. there are various ways to assign a constant value
in binary instructions, e.g. setting register rax on
x86-64 to zero can be implemented in several
ways such as xor rax, rax and mov 0, rax

Building our analysis on VEX IR code lifted from
binary code significantly helps us address these
challenges. Particularly different binary instructions
that are commonly used to perform the same operations

such as value comparison are translated into the
same VEX IR instruction. For example, the x86-
64 instructions test rax, rax and cmp rax, 0 are
translated into the same VEX IR instruction CmpEQ64.
This makes it easier for us to address the last two
challenges.

The first three challenges could be addressed with
copy propagation and reaching definition analysis.
Unfortunately no prior work on binary analysis can
provide a variable recovery and reaching definition
analysis on binary code with the same quality as those
on source code. To be efficient and conservative, our
prototype of RVM performs copy propagation and
uses path-insensitive data flow analysis to locate a
definition or assignment for a register or a variable,
and will terminate the analysis if there are more than
one definition to the same register or variable and
these definitions occur on different paths. Essentially
this can cause an under-approximation for identifying
translated propagation.

5.7. Finding Error-Handling Code
This step takes the output from phase 1 as input, and
outputs a list of error return values for each function
in the target program. Particularly, its input includes
the API documentation on error return values for API
functions, the debug symbols, the call graph of the
program, the information on error propagation, and the
following information for each function of the program:

• list of constant return values

• list of function calls followed by constant returns

• a CFG

From the input, it extracts the error return values
for API functions from the API documentation, and
uses heuristics to identify error-handling code in each
function of the program. The two key heuristics, error-
logging functions and NULL returns, are discussed in
Section 3.

It then follows the NULL return heuristic to find
functions whose return type is pointer. To ensure that
NULL can be safely returned from these functions, it
verifies if any caller of the function checks the return
value against NULL. If so, it considers NULL as an error
return value for these functions.

After that, it follows the error-propagation informa-
tion to find error return values for other functions.

5.8. Generating SWRRs
With a given name of a vulnerable function, RVM aims
to generate one or more SWRRs to protect this function.
There are three different cases: 1) when RVM finds an
error return value for the function, RVM generates one

10
EAI Endorsed Transactions Preprint

Mitigating Vulnerabilities in Closed Source Software

SWRR for the function; 2) when RVM cannot find an
error return value for the function but finds error return
values for all the callers of the function, RVM generates
one SWRR for each of the caller function; 3) when
RVM cannot find an error return value for neither the
function nor all of its callers, RVM cannot generate an
SWRR to protect the function.

As described in Section 2.1, an SWRR consists of a
return statement. So RVM needs to generate binary
instructions corresponding to the return statement.
For example, a return statement is implemented as
a ret instruction and the return value is passed back
in register eax or rax for x86 and x86-64 platforms,
respectively. Depending on the calling convention used
by the program, the ret instruction may also take a
constant operand that specifies the number of bytes on
the stack that should be cleaned up.

Consequently, RVM needs information on the calling
convention and the error return value of the function to
be protected to generate an SWRR for a function.

Because different architectures can use different
application binary interface (ABI) for function calls,
RVM needs to generate an SWRR specifically for each
architecture. For example, x86 and x86-64 use the ret

instruction, while ARM uses the bx lr instruction.
Our current prototype focuses on x86 and x86-64
platforms so it generates an SWRR as a mov eax or
mov rax instruction with the error return value as
its operand and a following ret instruction with an
optional operand used for cleaning up the stack.

To find out whether the ret instruction needs an
operand and what constant value should be used
as the operand, one approach is to examine the
existing ret instruction in the function. Instead, RVM
chooses a simpler approach by cloning the existing ret

instruction in the function, based on the information
provided by angr on the address and length of the ret

instruction.

5.9. Inserting SWRRs
A common approach to insert new instructions into
binary code safely is to use a binary instrumentation
tool such as DynInst[50], because the insertion can
involve complex operations such as relocating existing
instructions and/or data and finding the binary file
offset corresponds to the entry address of the function,
which requires taking into account different formats of
binary code, such as PE and ELF.

But we note that inserting an SWRR does not
require preserving the original instructions of the
target function, because they will not be executed
anyway. As a result, an SWRR can be inserted by
overwriting the starting instructions of the function
with the instructions of the SWRR without the need for
relocation. This will work unless the size of the function

is smaller than the size of the SWRR instructions.
Because an SWRR consists of only two instructions that
occupy either six or seven bytes, it is rare to have a
function too small to hold an SWRR.

And finding the binary file offset corresponding to
function entry address can be achieved by using a
brute-force approach that searches the instructions of
the function in the entire binary file, without the need
of knowing the format of the binary code. Although this
approach can be inefficient, it is applicable to most if
not all binary code formats.

6. Discussions and Limitations
Ideally an SWRR should disable as minimum function-
ality as possible in order to retain unobtrusiveness. One
of the major reasons that SWRRs are designed to disable
code execution at the granularity of a function is that
the names of vulnerable functions are typically avail-
able in public vulnerability reports. With such mini-
mum information and the access to program binaries,
RVM can generate SWRRs to mitigate vulnerabilities.

An acute reader may notice that SWRRs at the
granularity of a function can render a program
unusable when the function protected by an SWRR
happens to be on the critical path of the program. This
shortcoming can be addressed by extending the design
of SWRRs to disable the code execution at a granularity
finer than a function. Such an SWRR will disable a
function only when the specific vulnerable part of the
function is about to be executed. In this way, a program
will remain usable even when a function on the critical
path of the program is protected by an SWRR, as long as
the vulnerable part of the function will not be executed.

However, this will require more detailed information
about vulnerabilities. For example, synthesizing an
SWRR that disables code execution at the granularity of
a basic block within a function will need the necessary
information to identify the basic block. Unfortunately
this kind of information is usually unavailable in public
vulnerability reports.

RVM relies on API error specifications automatically
mined from online API documentation and local man
pages to identify error return values that can be used
to generate SWRRs. While the online documentation
and local man pages are usually up-to-date, they might
be inconsistent with the version of the API functions
installed on a particular computer. And sometimes
they might not get updated as fast as new versions
of API functions are released. Although this kind of
inconsistency can cause issues for developers who work
with these API functions, we note that RVM only
requires error return values of these API functions,
which are rarely changed in practice.

With the advance of machine learning, it is possible
to further improve the accuracy and coverage of the

11
EAI Endorsed Transactions Preprint

Z. Huang, G. Tan, X. Yu

identification of error return values by learning from
the program code [34] or program behavior [51].

An SWRR is designed to return an error return
value so that the caller of a function protected by
an SWRR is made aware that an input is about to
trigger a vulnerability and thus should not be processed
further. If an SWRR incorrectly returns a value that
is not supposed to be an error return value, the
caller of the function protected by the SWRR may
behavior unexpectedly. To avoid this kind of issues, we
can extend RVM to create a new error return value
specifically for our purpose, and synthesize SWRRs to
return the new error return value. However, this will
entail more changes to a target program because the
callers on the call chain to the function protected by
an SWRR will need to be augmented to identify and
propagate the new error return value.

Our prototype of RVM assumes that the target binary
does not use self-modifying code and is unpacked, so
that it could use a straightforward brute-force approach
to locate the instructions of a function in the binary file
without taking into account different formats of binary
files. In our future work, we plan to use a more reliable
approach that follows the format of binary files.

Currently our prototype works with binaries for
Windows and Linux running on x86 and x86-64 CPU
architectures. It will take minimum effort to extend our
prototype to work with binaries for other platforms,
because only the component in charge of generating
SWRRs needs to be extended to synthesize the machine
code that sets function return value for different CPU
architectures. Thanks to the simple design of SWRRs,
synthesizing an SWRR for a particular CPU architecture
requires only the information on the calling convention,
and which instructions can be used to set a function
return value. For example, an SWRR for ARM64 can
use a mov instruction to move an error return value into
the w0 register, because the ARM64 calling convention
specifies that the w0 register is used to pass a function
return value.

7. Evaluation

In this section, we first present our results of mining
API error specifications from online documentations,
and then report the coverage of SWRRs produced by
RVM. We focus on the coverage of SWRRs produced
by RVM, because the security guarantee of SWRRs is
not affected by whether the SWRRs are produced in
the form of binary code or source code. After that, we
illustrate how SWRRs instrumented by RVM mitigate
real-world vulnerabilities using case study. Finally we
present the performance of RVM on analyzing binaries,
generating SWRRs, and instrumenting the SWRRs into
binaries.

Table 1. API error specifications mined by RVM. For Windows,
the column “Sources” refers to URLs. For Linux, it refers to man
pages.

API # Source # Category # Func. # Header File

Windows 22,973 707 15,359 5,071
Linux 5,142 N/A 3,455 385

Table 2. Binaries that have real-world vulnerabilities.

CVE# App. Binary Size # Func.

2006-3730 IE webvw.dll 133KB 2,789
2006-4071 Windows gdi32.dll 281KB 1,499
2011-4362 lighttpd mod_auth.so 76KB 75

For all our evaluations, we use a workstation that
has an Intel Core i7-7700 CPU running at 3.60GHz
and 16GB RAM. The workstation runs Ubuntu 16.04
desktop operating system on a 2TB 7200 RPM SATA
hard drive.

7.1. API Error Specifications

As described in Section 5, we build a web crawler
to crawl online Windows API documentations and a
text analyzer to mine local Linux man pages to mine
API error specifications. In this section, we present our
results on mining API error specifications.

Note that we mine error specifications directly
from either online API documentations or local man
pages, rather than header files. However, these API
documentations are indeed generated by software
vendors from header files, as described in the
documentations. So we count the number of header files
from which these API documentation are generated by
using the information in the documentations. This gives
us a rough idea that how many header files need to be
mined to retrieve the same information if we mine the
header files for API functions.

As shown in Table 1, our web crawler visited 22,973
URLs and identified the error specification for 15,359
Windows API functions, which belong to 707 different
categories according to the documentation. By contrast,
our text analyzer searched through 5,142 man pages
and found the error specification for 3,455 Linux API
functions. Mining from these URLs and man pages can
be considered as equivalent from 5,071 and 385 header
files, respectively.

12
EAI Endorsed Transactions Preprint

Mitigating Vulnerabilities in Closed Source Software

Table 3. Coverage of SWRRs produced by RVM.

Binary Protect. API Spec. Pointer. Prop. Indirect

webvw.dll 55.0% 0.7% 0.3% 36.2% 17.8%
gdi32.dll 75.5% 16.4% 0.0% 30.8% 28.3%
mod_auth.so 77.3% 9.3% 0.0% 0.0% 68.0%
AVERAGE 69.3% 8.8% 0.1% 22.3% 38.0%

7.2. Coverage
We use real-world vulnerabilities in popular Windows
and Linux applications for our evaluation. For each
vulnerability, we choose to use the particular binary
that contains the vulnerable function to apply SWRRs.
The vulnerabilities are listed in Table 2, which also
shows the type of operating system (OS), the name of
the application and the binary, the size of the binary and
the number of functions that the binary has.

The results on the coverage of SWRRs produced
by RVM for these binaries are shown in Table 3.
The column “Protected” shows the percentage of
the functions that can be protected by SWRRs. The
column “API.” and “Pointer.” show the percentage
of the functions that whose error-handling code are
identified using API error specifications and pointer
return types, respectively. The column “Prop.” presents
the percentage of functions whose error return value
is identified via following the error propagation in
the binary. Lastly the column “Indirect” presents the
percentage of functions that are protected indirectly by
SWRRs in all of their caller functions.

We can see that on average RVM can apply SWRRs
to 69.3% of the functions in these binaries. Using API
error specifications and pointer return types allows
RVM to identify 8.8% and 0.1% of the functions
respectively. While following error propagation helps
identifying the error return values for 22.3% of the
functions, 38.0% of the functions have to be protected
by SWRRs in their caller functions.

7.3. Case Study
We use an Internet Explorer vulnerability CVE-2006-
3730 [52], shown in Table 2, as a case study to illustrate
how RVM can be used to rapidly provide protection for
users of the unpatched Internet Explorer.

This is an integer overflow vulnerability in the
setSlice method of an ActiveX object contained in the
webvw.dll shared library used by Internet Explorer.
By crafting a malicious web page that contains a call
to this vulnerable method with a specific argument,
an adversary can trigger the vulnerability and execute
arbitrary code with the permissions of the user
when the user browses the web page with Internet

Table 4. Performance of RVM: all execution time is measured in
seconds.

Binary angr Ph. 1 Ph. 2 Ph. 3 & 4 Total

webvw.dll 15 394 0.3 20 429.3
gdi32.dll 16 3107 0.6 26 3149.6
mod_auth.so 0.7 13 0.1 1 14.8
AVERAGE 10.6 1171.3 0.3 15.7 1197.9

Explorer. Because exploits for this vulnerability had
been released before a patch was available, users
and system administrators were advised to apply a
configuration workaround that disables the use of this
vulnerable ActiveX control completely.

When RVM is used to apply SWRRs to mitigate
the vulnerability, it first finds that setSlice calls a
Windows API function DSA_SetItem, which returns
TRUE on success and FALSE on failure, and setSlice

uses the return value from the API function as its own
return value when the API function returns FALSE. As a
result, RVM determines that FALSE or 0 is also an error
return value for setSlice.

Because this function uses the stdcall calling
convention, it must free up the stack space allocated by
its caller when it returns to the caller. However, RVM
does not need to concern about the calling convention
in generating the SWRR for this function, because it
uses instruction cloning to copy the ret instruction of
the function as that of the SWRR. It then synthesizes
a mov 0, eax instruction that assigns 0 (FALSE) as
the function’s return value, and appends the cloned
ret instruction of the function as an SWRR for this
function, as shown below.

mov 0, eax

ret 0x38

After this, RVM locates the start of the function in
the binary file by searching for the first 32 bytes of the
instructions of the function in the binary file. Once it
locates the offset of the instructions, i.e. the start of the
function, it overwrites the start of the function with the
instructions of the SWRR after making a backup of the
original binary file.

7.4. Performance
We measure the execution time that RVM takes to
analyze a binary, generate an SWRR, and instrument
the SWRR into the binary. The results are presented in
Table 4.

We separate the execution time of the underlying
angr frame work and RVM to find out how much
execution time does RVM add on top of the execution

13
EAI Endorsed Transactions Preprint

Z. Huang, G. Tan, X. Yu

time of angr. The column “angr” contains the execution
time for angr to generate the underlying data structures
used by RVM, including the loading of a binary code
and the construction of a CFG. The column “Phase 1”
and “Phase 2” shows the execution time of phase 1 and
phase 2 of RVM, respectively. The column “Phase 3 &
4” includes the execution of both phase 3 and phase 4.
Finally the column “Total” presents the total execution
time for all phases of RVM. And all the execution times
are reported in seconds.

As we can see, phase 1 takes the vast majority of the
total execution time, as it performs intense program
analysis on a binary to identify information required to
find error-handling code. In total it can take RVM nearly
an hour to apply an SWRR to mitigate a vulnerability.
However, the user does not need to interfere with the
execution of RVM after starting it, because all the
phases are completely automated. And our prototype
has not been optimized, and we believe its performance
can be considerable improved after optimization.

8. Conclusion
In this paper, we present RVM, a system to rapidly
mitigating vulnerabilities in binary programs with
Security Workarounds for Rapid Response (SWRR).
RVM utilizes static program analysis to synthesize
SWRRs and uses binary rewriting to instrument SWRRs
into binary programs. The SWRRs gracefully disable
the execution of vulnerable functions to prevent
vulnerabilities from being exploited. As shown from
our evaluation on popular binary programs that contain
real-world vulnerabilities, RVM can apply SWRRs to
69.3% of the functions of binary programs.

References
[1] (2022), National Vulnerability Database, http://nvd.

nist.gov. Accessed: June, 2022.
[2] (2022), CVE Details, http://www.cvedetails.com.

Accessed: June, 2022.
[3] Aumpansub, A. and Huang, Z. (2021) Detecting

software vulnerabilities using neural networks. In
Proceedings of the 13th International Conference on
Machine Learning and Computing, Shenzhen China, 26
February, 2021- 1 March, 2021, ICMLC 2021 (ACM): 166–
171. doi:10.1145/3457682.3457707, URL https://doi.

org/10.1145/3457682.3457707.
[4] Huang, Z. and Yu, X. (2021) Integer overflow detection

with delayed runtime test. In Proceedings of the 16th
International Conference on Availability, Reliability and
Security, Vienna, Austria, August 17-20, 2021, ARES 2021
(ACM): 28:1–28:6. doi:10.1145/3465481.3465771, URL
https://doi.org/10.1145/3465481.3465771.

[5] Li, Z., Zou, D., Xu, S., Jin, H., Qi, H. and Hu, J.

(2016) Vulpecker: An automated vulnerability detec-
tion system based on code similarity analysis. In
Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, ACSAC ’16 (New York, NY,

USA: Association for Computing Machinery): 201–213.
doi:10.1145/2991079.2991102, URL https://doi.org/

10.1145/2991079.2991102.
[6] Wang, S., Liu, T. and Tan, L. (2016) Automati-

cally learning semantic features for defect predic-
tion. In Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE ’16 (New York, NY,
USA: Association for Computing Machinery): 297–308.
doi:10.1145/2884781.2884804, URL https://doi.org/

10.1145/2884781.2884804.
[7] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng,

Z. et al. (2018) Vuldeepecker: A deep learning-based
system for vulnerability detection. In Proceedings of the
25th Annual Network and Distributed System Security
Symposium.

[8] Wang, T., Wei, T., Gu, G. and Zou, W. (2010)
Taintscope: A checksum-aware directed fuzzing tool for
automatic software vulnerability detection. In 2010 IEEE
Symposium on Security and Privacy (IEEE): 497–512.

[9] Huang, Z., D’Angelo, M., Miyani, D. and Lie, D.

(2016) Talos: Neutralizing vulnerabilities with security
workarounds for rapid response. In Proceedings of the
37th IEEE Symposium on Security and Privacy, S&P 2016:
618–635. doi:10.1109/SP.2016.43.

[10] Huang, Z., Lie, D., Tan, G. and Jaeger, T. (2019)
Using Safety Properties to Generate Vulnerability
Patches. In Proceedings of the 40th IEEE Sympo-
sium on Security and Privacy, S&P 2019: 1174–1189.
doi:10.1109/SP.2019.00071.

[11] Huang, W., Huang, Z., Miyani, D. and Lie, D.

(2016) LMP: Light-weighted Memory Protection with
Hardware Assistance. In Proceedings of the 32nd
Annual Conference on Computer Security Applications,
ACSAC ’16 (New York, NY, USA: ACM): 460–470.
doi:10.1145/2991079.2991089, URL http://doi.acm.

org/10.1145/2991079.2991089.
[12] Niu, B. and Tan, G. (2014) Modular control-flow

integrity. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, PLDI ’14 (New York, NY, USA: ACM): 577–587.
doi:10.1145/2594291.2594295, URL http://doi.acm.

org/10.1145/2594291.2594295.
[13] Payer, M., Barresi, A. and Gross, T.R. (2015)

Fine-grained control-flow integrity through binary
hardening. In Proceedings of the 12th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment - Volume 9148, DIMVA
2015 (Berlin, Heidelberg: Springer-Verlag): 144–
164. doi:10.1007/978-3-319-20550-2_8, URL
https://doi.org/10.1007/978-3-319-20550-2_8.

[14] Huang, Z., Jaeger, T. and Tan, G. (2021) Fine-grained
program partitioning for security. In Proceedings of the
14th European Workshop on Systems Security, EuroSec
’21 (New York, NY, USA: Association for Computing
Machinery): 21–26. doi:10.1145/3447852.3458717, URL
https://doi.org/10.1145/3447852.3458717.

[15] (2015), Microsoft Security Advisory 3009008 -
Vulnerability in SSL 3.0 Could Allow Information
Disclosure, https://docs.microsoft.com/en-us/

security-updates/securityadvisories/2015/

3009008.

14
EAI Endorsed Transactions Preprint

http://nvd.nist.gov
http://nvd.nist.gov
http://www.cvedetails.com
https://doi.org/10.1145/3457682.3457707
https://doi.org/10.1145/3457682.3457707
https://doi.org/10.1145/3457682.3457707
https://doi.org/10.1145/3465481.3465771
https://doi.org/10.1145/3465481.3465771
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1109/SP.2016.43
https://doi.org/10.1109/SP.2019.00071
https://doi.org/10.1145/2991079.2991089
http://doi.acm.org/10.1145/2991079.2991089
http://doi.acm.org/10.1145/2991079.2991089
https://doi.org/10.1145/2594291.2594295
http://doi.acm.org/10.1145/2594291.2594295
http://doi.acm.org/10.1145/2594291.2594295
https://doi.org/10.1007/978-3-319-20550-2_8
https://doi.org/10.1007/978-3-319-20550-2_8
https://doi.org/10.1145/3447852.3458717
https://doi.org/10.1145/3447852.3458717
https://docs.microsoft.com/en-us/security-updates/securityadvisories/2015/3009008
https://docs.microsoft.com/en-us/security-updates/securityadvisories/2015/3009008
https://docs.microsoft.com/en-us/security-updates/securityadvisories/2015/3009008

Mitigating Vulnerabilities in Closed Source Software

[16] out-of-bounds read due to signedness error,
https://download.lighttpd.net/lighttpd/

security/lighttpd_sa_2011_01.txt.
[17] Apache httpd Vulnerability Workaround,

http://mail-archives.apache.org/mod_

mbox/httpd-users/201408.mbox/%3CCAC=

HunseOneq3nOoVbSSADMPVgTpDeihHYOu+

95b66fLUT2Qow@mail.gmail.com%3E.
[18] Squid Range Headers Vulnerability Workaround,

http://www.squid-cache.org/Advisories/

SQUID-2014_2.txt.
[19] Huang, Z. and Tan, G. (2019) Rapid Vulnerability

Mitigation with Security Workarounds. In Proceedings of
the 2nd NDSS Workshop on Binary Analysis Research, BAR
’19. doi:http://dx.doi.org/10.14722/bar.2019.23052.

[20] Shacham, H. (2007) The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS): 552–61.

[21] Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R.,
Ormandy, T., Okasaka, S. et al. (2009) Native client: A
sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy: 79–93.
doi:10.1109/SP.2009.25.

[22] Wartell, R., Mohan, V., Hamlen, K.W. and Lin,

Z. (2012) Securing untrusted code via compiler-
agnostic binary rewriting. In Proceedings of
the 28th Annual Computer Security Applications
Conference, ACSAC ’12 (New York, NY, USA: ACM):
299–308. doi:10.1145/2420950.2420995, URL
http://doi.acm.org/10.1145/2420950.2420995.

[23] Pappas, V., Polychronakis, M. and Keromytis, A.D.

(2012) Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
2012 IEEE Symposium on Security and Privacy: 601–615.
doi:10.1109/SP.2012.41.

[24] v. d. Veen, V., Göktas, E., Contag, M., Pawoloski, A.,
Chen, X., Rawat, S., Bos, H. et al. (2016) A tough call:
Mitigating advanced code-reuse attacks at the binary
level. In 2016 IEEE Symposium on Security and Privacy
(SP): 934–953. doi:10.1109/SP.2016.60.

[25] Xu, Z., Zhang, Y., Zheng, L., Xia, L., Bao, C., Wang,

Z. and Liu, Y. (2020) Automatic hot patch gener-
ation for android kernels. In 29th USENIX Secu-
rity Symposium (USENIX Security 20) (USENIX Asso-
ciation): 2397–2414. URL https://www.usenix.org/

conference/usenixsecurity20/presentation/xu.
[26] Schuster, F., Tendyck, T., Liebchen, C., Davi, L.,

Sadeghi, A. and Holz, T. (2015) Counterfeit object-
oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications. In 2015
IEEE Symposium on Security and Privacy: 745–762.
doi:10.1109/SP.2015.51.

[27] Wahbe, R., Lucco, S., Anderson, T.E. and Graham, S.L.

(1994) Efficient software-based fault isolation. In ACM
SIGOPS Operating Systems Review, 27: 203–216.

[28] Tan, G. (2017) Principles and implementation tech-
niques of software-based fault isolation. Foundations and
Trends in Privacy and Security 1(3): 137–198.

[29] Abadi, M., Budiu, M., Erlingsson, U. and Ligatti,

J. (2005) Control-flow integrity. In Proceedings of the

12th ACM Conference on Computer and Communications
Security (CCS): 340–353.

[30] Wang, G., Chattopadhyay, S., Gotovchits, I., Mitra,

T. and Roychoudhury, A. (2019) oo7: Low-overhead
defense against spectre attacks via program analysis.
IEEE Transactions on Software Engineering 47(11): 2504–
2519.

[31] Aleph One (1996) Smashing the stack for fun and profit.
Phrack Magazine 7(49).

[32] Ghavamnia, S., Palit, T., Benameur, A. and Polychron-

akis, M. (2020) Confine: Automated system call pol-
icy generation for container attack surface reduction.
In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020): 443–458.

[33] Duan, R., Bijlani, A., Ji, Y., Alrawi, O., Xiong, Y., Ike, M.,
Saltaformaggio, B. et al. (2019) Automating patching of
vulnerable open-source software versions in application
binaries. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019 (The Internet Society).

[34] Miyani, D., Huang, Z. and Lie, D. (2017) BinPro: A Tool
for Binary Source Code Provenance. arXiv .

[35] Tian, Y. and Ray, B. (2017) Automatically diagnosing
and repairing error handling bugs in c. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017 (New York, NY, USA: ACM):
752–762. doi:10.1145/3106237.3106300, URL http://

doi.acm.org/10.1145/3106237.3106300.
[36] Marinescu, P.D. and Candea, G. (2009) Lfi: A

practical and general library-level fault injector. In 2009
IEEE/IFIP International Conference on Dependable Systems
Networks: 379–388. doi:10.1109/DSN.2009.5270313.

[37] Jana, S., Kang, Y.J., Roth, S. and Ray, B. (2016)
Automatically detecting error handling bugs using
error specifications. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX:
USENIX Association): 345–362. URL https:

//www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/jana.
[38] Kang, Y., Ray, B. and Jana, S. (2016) Apex: Automated

inference of error specifications for c apis. In Proceedings
of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016 (New York, NY,
USA: ACM): 472–482. doi:10.1145/2970276.2970354,
URL http://doi.acm.org/10.1145/2970276.2970354.

[39] (2018), System Error Codes, https://docs.

microsoft.com/en-us/windows/desktop/debug/

system-error-codes.
[40] Red Hat Bugzilla – Bug 758624, https://bugzilla.

redhat.com/show_bug.cgi?id=758624.
[41] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N.,

Polino, M., Dutcher, A., Grosen, J. et al. (2016) SoK:
(State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE Symposium on Security and Privacy.

[42] (2018), Talos: a software tool that automatically gen-
erates and instruments SWRRs into target applications
using static program analysis. , https://github.com/
huang-zhen/Talos.

[43] Nethercote, N. and Seward, J. (2007) Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In The 2007 ACM Conf. on Programming Language

15
EAI Endorsed Transactions Preprint

https://download.lighttpd.net/lighttpd/security/lighttpd_sa_2011_01.txt
https://download.lighttpd.net/lighttpd/security/lighttpd_sa_2011_01.txt
http://mail-archives.apache.org/mod_mbox/httpd-users/201408.mbox/%3CCAC=HunseOneq3nOoVbSSADMPVgTpDeihHYOu+95b66fLUT2Qow@mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/httpd-users/201408.mbox/%3CCAC=HunseOneq3nOoVbSSADMPVgTpDeihHYOu+95b66fLUT2Qow@mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/httpd-users/201408.mbox/%3CCAC=HunseOneq3nOoVbSSADMPVgTpDeihHYOu+95b66fLUT2Qow@mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/httpd-users/201408.mbox/%3CCAC=HunseOneq3nOoVbSSADMPVgTpDeihHYOu+95b66fLUT2Qow@mail.gmail.com%3E
http://www.squid-cache.org/Advisories/SQUID-2014_2.txt
http://www.squid-cache.org/Advisories/SQUID-2014_2.txt
https://doi.org/http://dx.doi.org/10.14722/bar.2019.23052
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1145/2420950.2420995
http://doi.acm.org/10.1145/2420950.2420995
https://doi.org/10.1109/SP.2012.41
https://doi.org/10.1109/SP.2016.60
https://www.usenix.org/conference/usenixsecurity20/presentation/xu
https://www.usenix.org/conference/usenixsecurity20/presentation/xu
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/3106237.3106300
http://doi.acm.org/10.1145/3106237.3106300
http://doi.acm.org/10.1145/3106237.3106300
https://doi.org/10.1109/DSN.2009.5270313
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/jana
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/jana
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/jana
https://doi.org/10.1145/2970276.2970354
http://doi.acm.org/10.1145/2970276.2970354
https://docs.microsoft.com/en-us/windows/desktop/debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/debug/system-error-codes
https://bugzilla.redhat.com/show_bug.cgi?id=758624
https://bugzilla.redhat.com/show_bug.cgi?id=758624
https://github.com/huang-zhen/Talos
https://github.com/huang-zhen/Talos

Z. Huang, G. Tan, X. Yu

Design and Implementation (PLDI): 89–100.
[44] Aho, A.V., Lam, M.S., Sethi, R. and Ullman, J.D.

(2007) Compilers: principles, techniques, & tools (Addison
Wesley).

[45] Scrapy | A Fast and Powerful Scraping and Web
Crawling Framework, http://scrapy.org.

[46] (2018), Programming reference for Windows API,
https://docs.microsoft.com/en-us/windows/

desktop/api/index.
[47] (2018), Windows Symbol Packages, https:

//docs.microsoft.com/en-us/windows-hardware/

drivers/debugger/debugger-download-symbols.
[48] (2018), INSTALLING DEBUGINFO PACKAGES,

https://access.redhat.com/documentation/en-us/

red_hat_enterprise_linux/6/html/developer_

guide/intro.debuginfo.
[49] (2018), Debug Symbol Packages, https://wiki.

ubuntu.com/Debug%20Symbol%20Packages.

[50] Buck, B. and Hollingsworth, J.K. (2000) An API for
Runtime Code Patching. The International Journal of
High Performance Computing Applications 14(4): 317–329.
doi:10.1177/109434200001400404, URL https://doi.

org/10.1177/109434200001400404. https://doi.org/
10.1177/109434200001400404.

[51] Huang, Z. and Lie, D. (2014) Ocasta: Clustering con-
figuration settings for error recovery. In Proceedings
of the 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN ’14
(Washington, DC, USA: IEEE Computer Society): 479–
490. doi:10.1109/DSN.2014.51, URL http://dx.doi.

org/10.1109/DSN.2014.51.
[52] Microsoft Windows WebViewFolderIcon ActiveX

Control setSlice() Integer Overflow Vulnerability,
https://tools.cisco.com/security/center/

viewAlert.x?alertId=11787.

16
EAI Endorsed Transactions Preprint

http://scrapy.org
https://docs.microsoft.com/en-us/windows/desktop/api/index
https://docs.microsoft.com/en-us/windows/desktop/api/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-symbols
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-symbols
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-symbols
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/developer_guide/intro.debuginfo
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/developer_guide/intro.debuginfo
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/developer_guide/intro.debuginfo
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1109/DSN.2014.51
http://dx.doi.org/10.1109/DSN.2014.51
http://dx.doi.org/10.1109/DSN.2014.51
https://tools.cisco.com/security/center/viewAlert.x?alertId=11787
https://tools.cisco.com/security/center/viewAlert.x?alertId=11787

	1 Introduction
	2 Background and Related Work
	2.1 SWRR
	2.2 Defending Against Exploits
	2.3 Patching Binary Code
	2.4 Inferring Error-Handling Code

	3 Problem Description and Challenges
	3.1 Main Heuristics
	3.2 Extension Heuristics
	3.3 Generating and Instrumenting SWRRs

	4 RVM
	5 Design and Implementation
	5.1 Overview
	5.2 Identifying Function Return Types
	5.3 Finding Constant Return Values
	5.4 Finding Calls Followed by Constant Returns
	5.5 Mining API Error Specifications
	5.6 Locating Error Propagation
	5.7 Finding Error-Handling Code
	5.8 Generating SWRRs
	5.9 Inserting SWRRs

	6 Discussions and Limitations
	7 Evaluation
	7.1 API Error Specifications
	7.2 Coverage
	7.3 Case Study
	7.4 Performance

	8 Conclusion

