
Debloating Feature-Rich Closed-Source Windows
Software

Zhen Huang
School of Computing

DePaul University
Chicago, USA

zhen.huang@depaul.edu

Abstract—Feature-rich software programs typically provide
many configuration options for users to enable and disable
features, or tune feature behaviors. Given the values of con-
figuration options, certain code blocks in a program will become
redundant code and never be used. However, the redundant code
is still present in the program and thus unnecessarily increases a
program’s attack surface by allowing attackers to use it as return-
oriented programming (ROP) gadgets. Existing code debloating
techniques have several limitations: not targeting this type of
redundant code, requiring access to program source code or user-
provided test inputs.

In this paper, we propose a practical code debloating approach,
called BinDebloat, to address these limitations. BinDebloat iden-
tifies and removes redundant code caused by configuration option
values. It does not require user-provided test inputs, or support
from program developers, and is designed to work on closed-
source programs. It uses static program analysis to identify
code blocks that are control-dependent on configuration option
values. Given a set of configuration option values, it automatically
determines which of such code blocks become redundant and uses
static binary rewriting to neutralize these code blocks so that they
are removed from the attack surface. We evaluated BinDebloat
on closed-source Windows programs and the results show that
BinDebloat can effectively reduce a program’s attack surface.

I. INTRODUCTION

Many software programs offer configuration-based features
to meet the diverse requirements of different users. A user
can conveniently enable or disable a feature by changing
the corresponding configuration options. As user requirements
become more and more complicated, the number of features
and their corresponding configuration options increase dramat-
ically. Popular programs such as MS Office, Adobe Acrobat
Reader, Apache HTTP server, and MySQL typically have
hundreds of configuration options [1], [2].

While a feature-rich program provides a large number of
configuration options, each individual user usually uses only
a small subset of them. Prior study has shown that below
17% of the configuration options are used by the majority
of users [2]. However, the code exclusively used by the
unused features still remain in the program and leaves the
program a bloated attack surface. Despite decades of effort
in addressing vulnerabilities [3]–[11], the unused code can
contain vulnerabilities and lead to severe security issues, such
as being exploited by return-oriented programming (ROP)
attacks [12] and data-only attacks [13].

To remedy such issues, code debloating techniques have
been proposed to reduce the attack surface of the programs
or the underlying API libraries or operating systems. These
techniques can be roughly categorized into three directions.
One direction is to remove the extraneous code from the
programs [14] so that the attacks can no longer exploit unused
code in programs. Another direction is to remove the code of
API functions not used by programs [15]. This way attackers
cannot take advantage of unused API functions. The other
direction is to specialize API functions [16], or customize OS
kernels [17]. By restricting the way to use API functions or
OS system calls, illegitimate use of them will be prevented.

However, these techniques have several limitations. First,
the majority of them do not target configuration-based features.
Some of them require developers to annotate feature-specific
code [18]. Some ask developers to provide one or more
seed functions for identifying features [19]. Second, few of
the techniques targeting configuration-based features work on
closed-source software. The vast majority of them need access
to program source code [20], [21], which prevents them from
being applicable to proprietary software or legacy software,
which often does not have source code. Third, many of them
require users to provide a set of test inputs to identify the
mapping of configuration to code [14], [22], which is a non-
trivial task for end-users and even developers.

The goal of this work, called BinDebloat, is to over-
come these limitations. We focus on programs that provide
configuration-based features and develop static program analy-
sis techniques to map configuration options to the binary code
of a program that implements these features, which require
neither source code nor test inputs. For each configuration
option, we identify the code that will be conditionally executed
based on the value of the configuration option. Based on the
mapping, our work reduces the attack surface by removing
from the program the binary code that will never be executed
for the given setting of configuration options.

We choose to use configuration options to identify program
features because 1) programs commonly provide configuration
options for users to enable or disable specific program features,
and 2) programs usually use standard configuration storage to
store and access configuration options, such as using Windows
registry or text-based configuration files.

We developed a prototype of BinDebloat that automatically

identifies in a closed-source program the redundant binary
code, for a set of values of configuration options, and uses
binary rewriting to neutralize the redundant code. As most
Windows programs use Windows registry for storing configu-
ration options, BinDebloat targets Windows programs that use
Windows registry. It leverages static program analysis to find
the mapping of configuration options and code. To neutralize
redundant code, it replaces redundant code with instructions
that will trigger software interrupts.

This work makes the following major contributions:

• We describe the design and implementation of BinDe-
bloat, an approach to debloat redundant code in closed-
source programs. BinDebloat automatically identifies and
removes code blocks redundant for a set of configuration
option values used by a program. It does not requires
support from program developers or test inputs.

• We evaluate BinDebloat on two popular real-world
closed-source Windows programs, 7zip file archiver and
Adobe Acrobat DC PDF reader. The evaluation illustrate
the potential of BinDebloat to effectively reduce the
attack surface of closed-source programs.

II. RELATED WORK

Program Debloating. Code debloating removes redundant
code from a program. The redundant code is typically defined
as the code exclusively used by unneeded program features.
When a feature is not used by a user, its corresponding code
is considered redundant. One major challenge is how to define
and identify program features.

Some tools require considerable effort from program de-
velopers or users to identify program features [18], [23].
CARVE expects program developers to identify features with
program annotations [23]. The annotations map each feature
to its corresponding source code by marking the beginning
and the end of the code. To remove the redundant code for an
unused feature, CARVE deletes the code. Its shortcoming is
that annotating program code can be tedious and error-prone.

Based on the idea of delta debugging [24], CHISEL splits
program code into multiple partitions and iteratively searches
for a partition that can meet a user’s requirements [18]. It
relies on a user-provided property test function to identify
features needed by a user. For each candidate partition, it runs
the partition against the property test function to determine
whether the partition is the desired one.

A few tools use configuration options to identify program
features for debloating [20], [21]. TRIMMER reduces program
code size by transforming program source code mainly with
constant propagation based on the constant values of a given
set of configuration options [20]. To delete redundant code, it
uses loop unrolling in conjunction with constant propagation to
customize the code for the values of the configuration options.

API Specialization. While code debloating focuses on the
code of a target program, API specialization focuses on the
API functions and libraries used by a target program. Most of

the API specialization tools either create specialized versions
of API functions or remove unnecessary API functions.

Piece-wise compiler [15] analyzes the source code of a
program to find out which API functions are called by the
program, and removes the API functions that will never be
called by the program. C2C [21] prevents unnecessary calls
to API functions from a program under a particular set of
configuration option values. It identifies the set of system calls
conditionally used by a program, and uses Seccomp BPF to
restrict the system calls the program can use at runtime. While
piece-wise compiler and C2C require access to program source
code, Nibbler [25] works on binary code. It creates special
versions of libraries for the program by statically removing
the unneeded API functions from the libraries.

III. MOTIVATION

Code bloating, also called feature creep, is common in
feature-rich software programs because many features are not
actually used by the vast majority of users [2]. Retaining the
code implementing these unused features would unnecessarily
increase the attack surface of programs.

Listing 1 illustrates an example of unused code in a pro-
prietary PDF reader, Adobe Acrobat DC. The entry func-
tion of the PDF reader, WinMain, checks whether the user
uses the feature for dynamic shared library optimization,
which can be enabled or disabled by configuration option
bLTEnableDLLOptimization in the Windows registry.
By default, this option does not even exist, meaning that the
option is disabled.

We can see that line 4 of the assembly code attempts to
read the configuration option from Windows registry via a
call to RegGetValueW, a Windows registry API function
that retrieves a value of a configuration option. The result
of the call determines whether to execute the instructions
from memory address 0x14027309A to 0x1402731FE, which
corresponds to 89 instructions.

If the configuration option does not exist, the jump at line 8
will be taken so that all the instructions from line 9 to line 97
will never be executed. If the configuration option exists but
its value is zero, the jump at line 10 will be taken so that all
the instructions from line 11 to line 97 will never be executed.
As a result, these instruction do not need to be present in
the program when the configuration option is absent or set to
zero. Having these instructions in the program unnecessarily
increases the attack surface and allows an attacker to use them
as GOP gadgets for return-oriented-programming attacks [12].

State-of-art code debloating techniques reduce the attack
surface of programs in various ways. However, they have
several major limitations that make it difficult for users,
particularly end users, to adopt them in practice. We believe
that a practical code debloating solution should satisfy four
requirements. First, it should target feature-rich programs
that use configuration options to control whether to execute
feature-specific code. Second, it should work on closed-source
software (CSS) programs. Third, it should not require support
from program developers, such as annotating code, providing

i n t WinMain (. . .)
; o p t i o n : " bLTEnableDLLOpt imiza t ion "
; a S o f t w a r e P o l i c y : "SOFTWARE\ P o l i c i e s \ Adobe \ Adobe

Acroba t \DC\ FeatureLockdown "

; =============== B a s i c Block 1 ==============
1 . t e x t :14027306 F l e a r8 , o p t i o n
2 . t e x t :140273076 l e a rdx , a S o f t w a r e P o l i c y
3 . t e x t :14027307D mov rcx , hkey
4 . t e x t :140273084 c a l l RegGetValueW
5 . t e x t :14027308A t e s t eax , eax
6 . t e x t :14027308C j z 14027309A

; =============== B a s i c Block 2 ==============
7 . t e x t :14027308E
8 . t e x t :140273095 jmp 1402731FE

; =============== B a s i c Block 3 ==============
9 . t e x t :14027309A cmp va lue , 0

10 . t e x t :1402730A1 j z 1402731FE

; =============== B a s i c Block 4 ==============
11 . t e x t :1402730A7
. .

97

; =============== B a s i c Block 5 ==============
98 . t e x t :1402731FE
. .

Listing 1: Example assembly code containing configuration-
dependent code blocks, adopted from the entry function
WinMain of Adobe Acrobat DC, a popular PDF readeer.

TABLE I: State-of-art code debloating techniques.

Technique Config. CSS Not Req. Not Req.
Options Dev. Support Test Inputs

Slimium [26] ✗ ✓ ✗ ✗
CARVE [23] ✗ ✗ ✗ ✓
Razor [27] ✗ ✓ ✓ ✗
Shredder [16] ✗ ✓ ✓ ✓
Nibbler [25] ✗ ✓ ✓ ✓
TOSS [14] ✗ ✓ ✓ ✗
[22] ✓ ✗ ✗ ✗

C2C [21] ✓ ✗ ✗ ✓
TRIMMER [20] ✓ ✗ ✓ ✓
BinDebloat ✓ ✓ ✓ ✓

seed functions for identifying features, or manually mapping
features to code. Lastly, it should not require users to provide
test inputs.

We summarize the extent to which representative state-of-
art code debloating techniques satisfy these four requirements
in Table I. The majority of them do not identify bloated
code using configuration options. None of the ones do so
can work with closed-source software. Furthermore, many of
them require either program developer support or test inputs.
This work, BinDebloat, is the only one satisfying all the four
requirements.

We introduce the following terms for defining the problem
addressed by BinDebloat.

Configuration Option. A configuration option, also called a
configuration setting, refers to a value that can be changed by
program users to control program behaviors, such as enabling

or disabling a program feature. It is usually represented a
pair of key and value, with the key specifying the name of
the configuration option. Configuration options are usually
stored in the file system, in the form of OS-provided storage,
such as Windows registry and Linux GSettings, or text-based
configuration files. In this work, we focus on configuration
options that are stored in Windows registry.

Configuration-dependent Code. We define configuration-
dependent code as the program code blocks that will be
executed if and only if the value of a configuration option
satisfies a condition. If the value of the configuration option
does not satisfy the condition, the code blocks will never be
executed.

Redundant Code. Given the values of the set of configu-
ration options used by a program, some of the program’s
configuration-dependent code will never be executed, regard-
less of user inputs. We refer to such code as redundant code.

The goal of BinDebloat is to identify and remove redundant
code in the binary code of closed-source programs, based on
a set of configuration option values.

IV. DESIGN AND IMPLEMENTATION

A. Overview
BinDebloat debloats code in a program that will never be

executed under a given set of the program’s configuration
option values. We call such kind of code redundant code.
BinDebloat takes the binary code of a program and the
program’s configuration option values as inputs, and gener-
ates a customized binary code that do not contain the code
not needed for the set of configuration option values, as
shown in Figure 1. It debloats code in three phases: labeling
configuration-dependent code, identifying redundant code, and
removing redundant code.

Labeling Config.
Dependent Code

① ② ③

Config.
Options

Removing
Redundant Code

Debloated
Program

Program Identifying
Redundant Code

Fig. 1: BinDebloat Workflow: each rounded rectangle repre-
sents a step in BinDebloat; each circled number denotes a
phase that consists of one or more steps underneath the circled
number; dotted arrows denote input/output data, while solid
arrows denote the order of steps.

In the first phase, it labels code blocks that are control-
dependent on configuration options values. In other words, the
values of configuration options determine whether these code
blocks will ever be executed. This phase takes the binary code
as input, and outputs a mapping from configuration options
to code blocks that are control-dependent on configuration
options. We call the mapping configuration-to-code mapping.

The second phase identifies the code blocks that need to
be debloated for the given setting of configuration options.

Based on the configuration-to-code mapping, it reads the
values of configuration options from the configuration storage,
e.g. Windows registry or configuration files, and finds out
which code blocks will never be executed for the given values
of configuration options. It takes the configuration-to-code
mapping and the configuration storage as input, and outputs a
list of redundant code blocks.

The third phase removes the redundant code blocks from
the binary code. It substitutes each instruction in these code
blocks with an instruction that will trigger a software interrupt.
It takes the binary code and the list of redundant code blocks
as input, and outputs a debloated binary program.

For the example code in Listing 1, and a set of configuration
option values in which the value of configuration option
bLTEnableDLLOptimization is zero, BinDebloat will
remove basic block 4 from the program. This is because that
basic block 4 will never be executed if the configuration option
is set to zero.

B. Labeling Configuration-Dependent Code

To be able to identify redundant code, BinDebloat needs
to label configuration-dependent code. Each configuration-
dependent code block needs to be associated with a pred-
icate involving the configuration option on which the code
blocks depend. The code blocks will never be executed
if the predicate evaluates to false. This is performed in
three steps: finding access to configuration options, identifying
configuration-dependent code blocks, and deriving constraints
for configuration-dependent code blocks.

First, it disassembles the binary code of the target program
into assembly instructions and builds control flow graphs
(CFGs) of the instructions. It then searches for the program’s
access to configuration options. It finds instructions directly
checking the existence of configuration options or reading
configuration option values. Then it identifies instructions
indirectly access configuration options via other functions.

Second, it builds the control dependency graphs (CDGs)
of the instructions and follows the accesses to configuration
options to identifies code blocks that are control-dependent
on configuration options. It looks for branch instructions
whose branches are dependent on the results of these accesses.
Based on the CDGs, it identifies code blocks that are control-
dependent on configuration options.

Lastly, it derives the constraints on which the execu-
tion of the configuration-dependent code blocks depend. The
constraints for each basic block is a conjunction of pred-
icates, each involves a configuration option. It labels each
configuration-dependent code block with its constraints.

1) Finding Access to Configuration Options: BinDebloat
uses angr to disassemble binary programs and build control
flow graphs. Figure 2a shows the CFG for the code in
Listing 1. The CFG consists of five basic blocks, in which
both basic block 1 and basic block 3 end with a conditional
branch.

To find direct access to configuration options, BinDebloat
searches for instructions accessing configuration options. Be-

∃
option

1

2 3

45

value≠0

∄o
pt
io
n

va
lu
e=
0

(a) Control flow graph (b) Basic block constraints

Fig. 2: Control flow graph and basic block constraints: each
circle denotes a basic block while each arrow denotes a control
flow.

cause most programs use configuration storage provided by
OSes to store configuration options, and call API functions to
access configuration options, it looks for instructions calling
configuration-related API functions. For example, it finds
instructions calling Windows registry API functions, such as
RegGetValueW and RegQueryValueExW, for programs
using Windows registry to store configuration options.

Some programs have wrapper functions for accessing con-
figuration options, and call these wrapper functions to indi-
rectly access configuration options. Typically a non-wrapper
function calls a wrapper function with the name of a configu-
ration option as an argument, and the wrapper function passes
the name argument to a configuration-related API function.

We note that a program may have multiple levels of
wrapper functions. One wrapper function can call another
wrapper function to access configuration options. As a result,
BinDebloat follows the call graph to identify different levels
of wrapper functions.

It focuses on wrapper functions that take the name of
a configuration option as an argument. Starting from the
functions directly accessing configuration options, it uses data
flow analysis to link the arguments of these functions to the ar-
guments used to call configuration-related API functions, and
follows the call graph to find indirect access to configuration
options.

2) Identifying Configuration-dependent Code Blocks: The
instructions accessing configuration options can perform two
types of accesses: retrieving the value of a configuration option
and checking the existence of a configuration option. An
instruction performing the former type of accesses typically
stores the retrieved configuration option values into some
memory locations, while an instruction performing the latter
type of accesses typically stores the values indicating the
existence of configuration options into CPU registers.

Based on the access type of these instructions, BinDebloat
uses data flow analysis to find conditional branches whose
conditions are derived from either the memory locations or the
CPU registers used as the access results by the instructions.
We call these conditional branches as configuration-related

branches.
BinDebloat then builds the CDGs of the program and

iterates through the list of configuration-related branches to
identify the list of code blocks that are control-dependent on
these branches. These code blocks are deemed configuration-
dependent code blocks.

3) Deriving Constraints for Configuration-dependent Code
Blocks: A code block can have two different types of control
dependencies on a configuration option: 1) value dependency
or 2) existence dependency. A value dependency refers to
the case when the dependency is on the configuration option
value. An existence dependency refers to the case when the
dependency is on whether a configuration option exists in
the configuration settings. BinDebloat differentiates the two
types of control dependencies based on the access type of the
instructions accessing configuration options.

For each configuration-dependent code block, BinDebloat
needs to derive the constraints that determine whether to
execute the code block. The constraints is in the form of a
conjunction of predicates, each of which involves a check on
a configuration option.

To build a predicate, BinDebloat requires two types of
information: the name of a configuration option and the check
on the configuration option. BinDebloat finds the name of the
accessed configuration options from the arguments used to call
configuration-related API functions or wrapper functions.

If a code block and a configuration option has an existence
dependency, BinDebloat only needs the name of the config-
uration option. If a code block and a configuration option
has a value dependency, the check on the predicate must
involve a comparison and a value. BinDebloat finds the type
of the comparison and the value to be compared based on the
semantics of the instruction retrieving a configuration option
value to its corresponding configuration-related branch.

Using Figure 2a as an example, basic block 1 checks the
existence of a configuration option. As a result, BinDebloat
derives ∃option as the constraints for basic block 3. Because
basic block 3 checks whether a value is zero, BinDebloat
derives ∃option ∧ value ̸= 0 as the constraints for basic
block 4, as shown in Figure 2b.

C. Identifying Redundant Code

Once constraints are derived for configuration-dependent
code blocks, BinDebloat will be able to identify redundant
code for any given set of configuration option values. It checks
which code blocks’ constraints cannot be satisfied based on the
configuration option values and considers such code blocks as
redundant code.

First, it builds a mapping from configuration options to
predicates, which are associated with configuration-dependent
code blocks. Second, for each configuration options in the
mapping, it uses the configuration option values to determine
which predicates cannot be satisfied. Last, it marks the code
blocks corresponding to the unsatisfiable predicates as redun-
dant code.

For programs using configuration storage provided by OSes,
such as Windows registry, BinDebloat calls configuration-
related API functions to retrieve the configuration option
values. For programs using customized configuration storage,
such as configuration files, BinDebloat calls user-provided
functions retrieve the configuration option values.

D. Removing Redundant Code

BinDebloat removes identified redundant code to reduce the
program’s attack surface. One method to remove instructions
from a binary program is to delete the instructions constituting
redundant code from the binary program. However, deleting
the instructions will require either recompiling the code [27]
or complex binary rewriting, because the addresses for the
instructions and data, following the deleted instructions will
be changed. Besides that, a major disadvantage is that it may
introduce new ROP gadgets [28].

Another method is to change each of these instructions into
a NOP [14] or a software interrupt instruction [25]. Preserving
the bytes corresponding to the "removed" instructions in a
binary program will avoid the issue of changing the addresses
of instruction or data following the "removed" instructions.
By changing the instructions to NOP or software interrupt
instruction, they cannot be used as any ROP gadgets.

BinDebloat removes the redundant code by using the second
method. It replaces each instruction of the redundant code with
an INT 3 instruction which will trigger a software interrupt
intended to be used by debuggers. If the program is not
running under a debugger, an INT 3 instruction will cause
the program to terminate.

V. EVALUATION

A. Experimental Setup

We conduct all our evaluations experiments on a workstation
equipped with a 32-core 2.2GHz AMD Ryzen Threadripper
processor and 128 GB memory. The workstation runs 64-bit
Ubuntu 20.04. Our preliminary evaluation is on two popular
close-source Windows programs, 7zip file archiver and Adobe
Acrobat DC PDF reader.

B. Configuration Dependent Code

Table II shows the number of configuration options, the
configuration-dependent instructions, and the total instructions
of these programs. As we can see, the two programs have ap-
proximately 10% configuration-dependent instructions, which
can potentially be removed to reduce the programs’ attack
surface.

TABLE II: Configuration-Dependent Code Statistics.

Program # Options # Config-Dep Instrs # Total Instrs
7zip 55 11847 (9.8%) 120,889
Acrobat DC 80 63,084 (10.9%) 577,612

C. Attack Surface Reduction

Similar to prior work [15], [16], [22], [27], we use the
number of removed ROP gadgets as the metric for the attack
surface reduction for a program. We use ROPGadgets to count
the number of ROP gadgets of the original programs and that
of the programs debloated by BinDebloat.

TABLE III: Attack Surface Reduction.

Program # Gadgets % Reduction
7zip 33,410 5.3
Acrobat DC 126,385 8.4

We list the result on attack surface reduction in Table III.
Column “# Insts." shows the total number of instructions of
a program. Column “# Gadgets” shows the total number ROP
gadgets in the program. Column “% Reduction” shows the
percentage of the ROP gadgets removed by BinDebloat.

VI. CONCLUSION

This paper presents BinDebloat, a technique for debloating
redundant code from closed-source programs. It focuses on re-
dundant code caused by program configurations. By statically
finding code blocks that are control-dependent on configura-
tion options, it identifies a program’s redundant code for a
set of configuration option values. By removing the redundant
code blocks from the program, it reduces the attack surface
of the program. The results of our experiment evaluation on
real-world Windows programs illustrate that BinDebloat can
effectively debloat closed-source programs.

REFERENCES

[1] Y. Hu, G. Huang, and P. Huang, “Automated reasoning and detection
of specious configuration in large systems with symbolic execution,”
in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, 2020, pp. 719–734.

[2] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 307–319.

[3] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution.”
in NDSS, 2009.

[4] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 497–
512.

[5] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[6] S. M. S. Talebi, Z. Yao, A. A. Sani, Z. Qian, and D. Austin, “Undo
workarounds for kernel bugs,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2381–2398.

[7] Z. Huang and G. Tan, “Rapid Vulnerability Mitigation with Security
Workarounds,” in Proceedings of the 2nd NDSS Workshop on Binary
Analysis Research, ser. BAR ’19, February 2019.

[8] Z. Huang and X. Yu, “Integer overflow detection with delayed runtime
test,” in Proceedings of the 16th International Conference on Availabil-
ity, Reliability and Security, ser. ARES ’21. ACM, 2021, pp. 28:1–28:6.

[9] Z. Huang, T. Jaeger, and G. Tan, “Fine-grained program partitioning for
security,” in Proceedings of the 14th European Workshop on Systems
Security, ser. EuroSec ’21. New York, NY, USA: ACM, 2021, pp.
21–26.

[10] A. Aumpansub and Z. Huang, “Detecting software vulnerabilities using
neural networks,” in ICMLC 2021: 13th International Conference on
Machine Learning and Computing, Shenzhen China, 26 February,
2021- 1 March, 2021. ACM, 2021, pp. 166–171. [Online]. Available:
https://doi.org/10.1145/3457682.3457707

[11] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair
with execution-based backpropagation,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 1506–1518. [Online]. Available: https://doi.org/10.1145/3510003.
3510222

[12] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, 2007, pp.
552–561.

[13] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1868–1882.

[14] Y. Chen, S. Sun, T. Lan, and G. Venkataramani, “Toss: Tailoring online
server systems through binary feature customization,” in Proceedings
of the 2018 Workshop on Forming an Ecosystem Around Software
Transformation, 2018, pp. 1–7.

[15] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-
wise compilation and loading,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 869–886.

[16] S. Mishra and M. Polychronakis, “Shredder: Breaking exploits through
api specialization,” in Proceedings of the 34th Annual Computer Security
Applications Conference, 2018, pp. 1–16.

[17] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “Face-change:
Application-driven dynamic kernel view switching in a virtual machine,”
in 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks. IEEE, 2014, pp. 491–502.

[18] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program
debloating via reinforcement learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 380–394.

[19] Y. Jiang, C. Zhang, D. Wu, and P. Liu, “Feature-based software
customization: Preliminary analysis, formalization, and methods,” in
2016 IEEE 17th International Symposium on High Assurance Systems
Engineering (HASE). IEEE, 2016, pp. 122–131.

[20] A. A. Ahmad, A. R. Noor, H. Sharif, U. Hameed, S. Asif, M. Anwar,
A. Gehani, F. Zaffar, and J. H. Siddiqui, “Trimmer: An automated
system for configuration-based software debloating,” IEEE Transactions
on Software Engineering, vol. 48, no. 9, pp. 3485–3505, 2021.

[21] S. Ghavamnia, T. Palit, and M. Polychronakis, “C2c: Fine-grained
configuration-driven system call filtering,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 1243–1257.

[22] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven
software debloating,” in Proceedings of the 12th European Workshop
on Systems Security, 2019, pp. 1–6.

[23] M. D. Brown and S. Pande, “Carve: Practical security-focused software
debloating using simple feature set mappings,” in Proceedings of the
3rd ACM Workshop on Forming an Ecosystem Around Software Trans-
formation, 2019, pp. 1–7.

[24] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[25] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portoka-
lidis, “Nibbler: debloating binary shared libraries,” in Proceedings of
the 35th Annual Computer Security Applications Conference, 2019, pp.
70–83.

[26] C. Qian, H. Koo, C. Oh, T. Kim, and W. Lee, “Slimium: debloating the
chromium browser with feature subsetting,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 461–476.

[27] C. Qian, H. Hu, M. Alharthi, S. P. H. Chung, T. Kim, and W. Lee,
“Razor: A framework for post-deployment software debloating.” in
USENIX Security Symposium, 2019, pp. 1733–1750.

[28] M. D. Brown and S. Pande, “Is less really more? towards better
metrics for measuring security improvements realized through software
debloating.” in CSET@ USENIX Security Symposium, 2019.

