August 2, 2014

Computer Science Education article

To appear in Computer Science Education
Vol. 00, No. 00, Month 20XX, 1-28

Metonymy and Reference-point Errors in Novice Programming

Craig S. Miller*
School of Computing, DePaul University, 248 S. Wabash Ave., Chicago, IL 60604, USA

(Received 00 Month 20XX; final version received 00 Month 20XX)

When learning to program, students often mistakenly refer to an element that is struc-
turally related to the element that they intend to reference. For example, they may
indicate the attribute of an object when their intention is to reference the whole object.
This paper examines these reference-point errors through the context of metonymy.
Metonymy is a rhetorical device where the speaker states a referent that is structurally
related to the intended referent. For example, the following sentence states an office
bureau but actually refers to a person working at the bureau: The tourist asked the
travel bureau for directions to the museum. Drawing upon previous studies, I discuss
how student reference errors may be consistent with the use of metonymy. In partic-
ular, I hypothesize that students are more likely to reference an identifying element
even when a structurally related element is intended. I then present two experiments,
which produce results consistent with this analysis. In both experiments, students are
more likely to produce reference-point errors that involve identifying attributes than
descriptive attributes. Given these results, I explore the possibility that students are
relying on habits of communication rather than the mechanistic principles needed for
successful programming. Finally I discuss teaching interventions using live examples
and how metonymy may be presented to non-computing students as pedagogy for
computational thinking.

Keywords: reference errors, metonymy, misconceptions, novice programming

1. Introduction

Consider this sentence: The tourist asked the travel bureau for directions to the mu-
seum. Few people would have difficulty understanding that the tourist did not talk
to a building, nor to an abstract government agency, but to an actual person who
works at the travel bureau. Moreover, the process of identifying the actual referent
(person) through its relationship to the place of employment (travel bureau) comes
so effortlessly to most people that they may not even be aware that the sentence
uses a rhetorical device for expressing how the tourist acquired directions.

Here the rhetorical device is metonymy. When using metonymy, the speaker does
not state the actual referent. In its place, the speaker states something that has
a relationship with the referent, often with the goal of emphasizing that aspect of
the relationship. Below are additional examples:

o The White House condemned the latest terrorist action. The action was not
condemned by the White House building but by a person who represents the
president who lives at the White House.

* Author email: cmiller@cdm.depaul.edu.

August 2, 2014 Computer Science Education article

e The pitcher threw the ball to first base. In the game of baseball, the pitcher
throws the ball to the person standing at first base.

o [thought the first dish we ate was excellent. The word dish does not refer to
the physical plate but the food that was on the plate.

e Open the bread and take out two slices. The request is to open the wrapper
containing the bread, not the bread itself.

In some cases, use of metonymy has become so common with some words, that
their dictionary definitions include the extended meaning. For example, the def-
inition of a dish includes the food served on it. However, note that in the right
context, any food-containing vessel (e.g. bowl, plate, pot) could carry a similar
meaning. Offering additional examples, Lakoff and Johnson (1980) make the case
that metonymy is not just a rhetorical device but language usage that reflects ev-
eryday activity and thinking. Its ubiquity is well documented across many (human)
languages (Panther & Radden, 1999). Moreover, Gibbs (1999) argues that speaking
and thinking with metonymy “is a significant part of our everyday experience.”

With its pervasive use in mind, metonymy may offer insight into student ref-
erence errors as they learn to program. In fact, the last listed example using the
word bread was inspired by an account of student errors from a class exercise. Orig-
inally described by Lewandowski and Morehead (1998), this exercise asks students
to issue precise commands so that the instructor, acting as a robot, assembles a
peanut butter and jelly sandwich. A major pedagogical goal of the exercise is to
introduce algorithms to students by having them develop a clear set of operational
instructions. Among accounts of student errors for this exercise, Davis and Rebel-
sky (2007) present the phrase, “Open the Bread,” as an example of student error.
While none of the accounts of this exercise have cited the role of metonymy, its
mechanisms ostensibly underlie some of the difficulty students face when forming
a precise, literal command.

While metonymy has been used for developing design patterns (Noble, Biddle,
& Tempero, 2002), the goal of this paper is consider its insights into student mis-
takes when learning to program. Prior study has identified human language as a
potential source of some student errors and misconceptions (e.g. Bonar & Soloway,
1985; Clancy, 2004; L. A. Miller, 1981). Many of these errors involve discrepancies
between word meanings in human language and their use in programming. In this
paper, the focus is on the mechanisms that underlie reference-point constructions
in human language and their potential misapplication in programming. The work-
ing thesis is that the workings of metonymy provide insight into student difficulty
when expressing the exact referent to a command or operation.

Before we further consider the role of metonymy, this paper reviews cases where
novice programmers write code that refer to the wrong element. Surveying prior
work, I introduce terminology that will be useful for analyzing these errors from
a metonymic perspective. Focusing on object-attribute reference errors, I apply
insight from metonymy to identify where reference-point errors are more likely to
occur. Two experiments are then presented that produce results consistent with
these predictions. Implications and recommendations are discussed. They include
some direction for developing effective instructional strategies and using metonymy
as a vehicle for introducing computational thinking to non-computing students.

August 2, 2014 Computer Science Education article

Contai

o Used-for

Used-for

Stated
Referent
f
Contains
Intended I
Referent

Figure 1. Semantic network demonstrating metonymy

2. Review of Reference-point errors

Reference-point errors involve incorrectly referring to an element that has a struc-
tural relationship with the intended element. The examples in this paper will make
use of the terms intended referent and stated referent. Figure 1 provides a concrete
example using the sandwich exercise. When the speaker says, “Open the bread,”
the stated referent is the bread, but the intended referent is the wrapper, which
is really the item that is to be opened. A listener can infer the intended referent
through its structural relationship (contains) to the bread. Of course, students need
to learn that most programming environments require that the intended referent
is explicitly referenced, otherwise an error will result.

Reference-point errors may occur in a variety of contexts. Previous reports have
noted the commonality of array errors (Daly, 1999; Garner, Haden, & Robins,
2005). One potential difficulty involves the distinction between the index and the
actual value located at the position denoted by the index. For example, a novice
programmer may inadvertently add one to the value of an array element when the
intention was to add one to the index in order to access the next value in the array.

Reference-point errors may also occur in the context of conflating memory refer-
ences and the actual content at the reference. Hristova, Misra, Rutter, and Mercuri
(2003) note that students often mistake reference comparisons with contents com-
parisons. For example, in Java, if the intention is to check whether two strings
(actually two references to string objects) have the same string contents, students
often incorrectly use the == operator, which only checks if the variables refer to
the same references, instead of the equals method, which actually compares the
string contents. The mistake is understandable since reference variables to strings
are often just called strings.

Reference-point errors may also involve entities outside of computer memory. In
the context of file references, students frequently specify a file’s location at the
wrong level in the directory structure (C. S. Miller, Perkovié, & Settle, 2010). At
the conceptual level, an earlier account using Pascal (Anjaneyulu, 1994) presents a
common student mistake when finding the mode (value with the largest number of
occurrences) in an array of integers. Instead of returning the value with the highest

August 2, 2014

Computer Science Education article

frequency, the incorrect code returns the frequency itself.

In the next section, I turn to reference-point errors involving objects and at-
tributes, which will be the focus of the paper. Here I apply insights from the use
of metonymy to understand the errors and identify where they are likely to occur.

2.1. Object instances and attributes

Holland, Griffiths, and Woodman (1997) note that students often conflate an object
with one of its attributes. For example, they may refer to the whole object when
it is the value of a particular attribute that is needed. Consider the following
code, which uses statements that are not unlike many programming languages and
environments for constructing a graphical user interface:

temperatureField = TextField.new
temperatureField.id = "temperature"
temperatureField.size = 5
temperatureField.value = 32

This code constructs an object that represents a text field. The code shows three
attributes for the text field object. The id uniquely identifies the component in
the interface. The size specifies the width of the text field. The value specifies the
contents of the text field. In everyday (non-computer) language, both the id and
the value may usefully identify the text field when speaking to a human listener.
However, this use of metonymy produces errors in programming statements:

mistakenly refer to the object to specify
the contents
givenTemperature = temperatureField

mistakenly refer to the id to specify
the contents
givenTemperature = temperature

mistakenly refer to the id when changing
the width
temperature.size = 10

These examples illustrate that metonymic errors are not simply characterized
as mistaking one referent for another structurally-related referent. In addition, the
mistakenly stated referent tends to be an element that distinguishes the intended
referent from other items. This analysis suggests that students would not mistak-
enly refer to the size element in place of the other elements since size generally
does not uniquely identify a component in an interface.

While all of these errors involve referents with structural relationships in com-
puter memory, it is also possible that metonymic usage may lead a student to
mistakenly refer to other elements when the intended referent is the text field. For
example, text fields typically have an adjacent text label. While there is no rela-
tionship between the label and the text field with respect to computer memory,
there is a meaningful structural relationship between the two components as the
application developer and user understand them. In this sense, a novice program-
mer may mistakenly state the label object (or perhaps an attribute belonging to

August 2, 2014

Computer Science Education article

it) when the intention is to refer to some aspect of the corresponding text field.

3. Implications and Predictions

Computer science instructors have long known that students will confuse one ele-
ment for another related element. At times, it may be tempting to simply dismiss
such mistakes as sloppy thinking, conceptual ignorance or even a general inability
to think computationally. Of course, these vague causes offer little direction for
understanding and correcting these mistakes. More helpful are efforts that try to
identify areas where students are missing important distinctions. Indeed, some of
the previous reports of student errors have taken this approach. However, to the
extent that mechanisms underlying metonymy also contribute to these errors, an
analysis based on metonymy provides a systematic approach to a range of logi-
cal errors spanning multiple programming paradigms. In particular, understanding
these errors as metonymic errors adds the following insights:

(1) In place of an intended reference, humans may state a related referent.
(2) The stated referent has a structural relationship with the intended referent.
(3) The stated referent is useful for uniquely identifying the intended referent.

These insights are consistent with findings from cognitive linguistics, where part-
whole relationships are a common source for the use of metonymy (Langacker,
1993). Moreover, they coincide with findings that metonymy is more likely to occur
when the speaker wants to emphasize a particular property (Radden & Kovecses,
1999). These findings thus make predictions about what to expect for when students
construct references in the context of programming. For example, the last insight
predicts that students are not likely to state any referent that has a relationship to
the intended referent if the stated referent is not useful for identifying the intended
referent. As we saw, the size attribute is not useful for identifying a particular text
field and we thus predict that a student would not refer to the size for this purpose
in a statement.

4. Overview of Empirical Studies

This section introduces two experiments that explore whether students are more
likely to mistakenly refer to an identifying attribute (e.g. name or title) in place
of the object itself. Both experiments refer to two types of attributes: identifying
attributes (e.g. name, title) and descriptive attributes (e.g. color, size). As already
discussed, identifying attributes are characterized by their ability to uniquely name
some entity, often within some context. Descriptive attributes may characterize the
entity but are generally not useful for uniquely identifying one within a set. Here the
attribute type, whether identifying or descriptive, is a product of human language
and should not be confused with type (e.g. integer, character) used in the context
of programming languages.

The context of use for the two experiments is database access using an Object-
Relational Mapping (ORM). This context provides a natural use of objects and
attributes for server-side web development. A previous study of student errors in
this context has already been reported (C. S. Miller, 2012). Results from this study
revealed students making errors consistent with metonymic use. Moreover, errors

August 2, 2014 Computer Science Education article

Has Many
Country City
id: integer id: integer
name: string name: string

population: integer
language: string
continent: string

\

Belongs To

population: integer
country_id: integer

Figure 2. Example models with Rails’ relations.

were most prevalent for object-identifying attributes (e.g. name) than descriptive
attributes (e.g. size). In this paper, the predicted use is more rigorously tested
by controlling for presentation order and structure. Before presenting the studies,
ORM access is reviewed in the context of metonymy.

4.1. Metonymy and Object-relational Mapping

The experiments for this paper were conducted within several web development
courses. In these courses, students access a database through the Active Record
ORM, used in the Ruby on Rails web development framework (Bachle & Kirchberg,
2007). A previous article (C. S. Miller, 2012) discusses the choice of this framework
and its ORM. Here we review some examples of ORM access in order to see how
students might mistakenly refer to objects and their attributes. Examples are based
on two schema models presented in Figure 2.

The Country model and the City model suffice to explore student errors and
assess the role of metonymy for this study. In addition to a few attributes (e.g.
name, population, language), both models have a primary key (id), which Active
Record provides by default. Also note that city has a foreign key (country_id). This
foreign key indicates a relationship between the two models. Using Active Record
terminology, we say that a City belongs to a Country and that a Country has many
Cities.

Once the models are specified and the relationships declared, Active Record
provides object-oriented access to the database by automatically defining classes
and methods for the models. Class methods selectively query records from the
database:

france_country = Country.find_by_name(’France’)
london_city = City.find_by_name(’London’)

all_city_objects = City.all
some_objects = City.where(’population > 1000’)

The assigned variable names document what the methods return. In the exam-
ples above, the Ruby on Rails framework dynamically defines methods such as
find by name, which are based on the model’s attributes.

Given an object (record) from the database, instance methods can be called with
them:

france_city_objects = france_country.cities

August 2, 2014 Computer Science Education article

Specified
Referent i @
@ Name

Name

Intended
Referent for == Isa lIsa
Selection
Contineontinent

Figure 3. Reference error.

uk_country_object = london_city.country

Finally, attribute values can be assigned to an object, which can then be saved
to the database:

new_country = Country.new
new_country.name = ’(Outland’
new_country.population = 12000
new_country.save

Even though Active Record simplifies database access using object-based nota-
tion, student developers are still required to correctly state the intended referent.
For example, if the goal is to list a country, more precisely, the name of the country,
the reference must explicitly reference the name attribute with the country object:

new_country.name

However, given the prevalence of metonymy in human languages, students may
be inclined to simply indicate the object:

new_country

Other circumstances may call for simply referencing the object (representing the
entire database record), perhaps to gain access to other attributes associated with
it. Considering the use of metonymy, students may be inclined to simply indicate
the name (a string) since it is the name that clearly distinguishes it from other
country objects. Figure 3 provides a working example. As the figure indicates,
Obj-1 and Obj-2 are usefully identified by their 'name’ attribute. However, simply
providing the name attribute will not be sufficient if the application requires a
reference to the object.

The next section reviews the actual problems used in the first experiment for
exploring reference errors and where they are likely to occur.

5. Experiment 1

5.1. Study Problems and Predictions

A short exercise with ORM problems was developed to assess student ability to ac-
cess database content using the Rails ORM, Active Record. The exercise presented
the schema shown in Figure 2. The exercise also presented a few working exam-

August 2, 2014

Computer Science Education article

ples similar to those presented in the previous section. Because students needed to
volunteer to participate in the study, the length of the exercise was limited to a
minimal number of problems in order to encourage participation and completion of
all problems. The first two problems (presented with answers below) ask students
to provide expressions that require an explicit reference to the name property:

(1) The country name with id 5.
Answer: Country.find(5).name
(2) The population of the city of Toronto.
Answer: City.find_by_name(Toronto’).population

While there are many correct answers for each problem, all correct answers re-
quire an explicit reference to the name property. However, as previously discussed,
students may (mistakenly) just reference the object. For example, for the first prob-
lem, they may omit the name reference and thus just provide the object: Coun-
try.find(5). For the second problem, they may mistakenly omit the name reference
when matching the city name: City. Toronto.population. Consistent with the use
of metonymy, an identifying attribute (e.g. name) can be interchanged with the
referent itself.

The last two problems in the exercise were expressly developed to explore how
students specify referents. Both problems ask students to delete an object from an
array:

(3) Provide ruby code that uses the remove method to delete the country named
"France’ from the country _list array.
Answer:
country_obj = Country.find_by_name(’France’)
country_list.remove(country_obj)
(4) Provide ruby code that uses the remove method to delete the country whose
language is “Norwegian” from the country_list array.
Answer:
country-obj = Country.find_-by_language(’Norwegian’)
country_list.remove(country-obj)

These two questions have similar structure in that both contain explicit identify-
ing information in the same order: object, attribute and then value. Moreover, the
phrasing is natural for both attributes. Using the exact sentence structure for both
questions was considered (e.g. ”...to delete the country whose name is 'France’
from...”) but was rejected out of the concern that the identical wording would
prime the answer for the next question. The discussion and the second experiment
addresses whether the difference in question structure affects student answers.

The answers to both problems are structurally identical. However, the first re-
quires use of the name attribute and the second requires the use of the language
attribute. Since the name attribute is commonly used to identify the object, we
hypothesize that it is more likely to be used in place of the object itself.

5.2. Method

The four ORM problems described in the previous section were assembled as an
exercise quiz. In order to mitigate order effects on the last two problems (Problem
3 and Problem 4), two versions were prepared. One version had the name-based

August 2, 2014

Computer Science Education article

problem appearing before the language-based problem. A second version had the
language-based problem appearing before the name-based problem. The appendix
provides the actual instructions with examples (Appendix A) and the set of exercise
questions (Appendix B).

The ORM problems were offered as an exercise in two classes of a web devel-
opment course at a large university. The two versions were distributed so that
each version was received by an equal number of students. While the exercise was
offered to all students, students actively chose to participate in the study by sub-
mitting their answers in a sealed envelope, which were then turned over to the
study’s investigator. Sixteen students (15 male, 1 female) submitted their answers
for analysis. The average age was 21 and the average number of prior program-
ming courses was 4. Since the prerequisite to this course included web development
courses covering HTML and CSS, it is likely that these courses were included in
the count of programming courses.

5.3. Results

For the first problem, a correct answer consists of obtaining the object (id = 5)
and then referencing its name attribute. Almost all students (15 of 16) produced
expressions for accessing the object—of varying degree of correctness—but only
two students referenced the name attribute. Of these two answers only one answer
was fully correct:

temp = Country.find_by_id(5)
temp.name

Another answer referenced the name attribute but did not form a correct expres-
sion:

Country.where = Country.name(5)

Some answers (5) successfully accessed the object! but did not then obtain the
requested attribute. Here is one example:

Country.find(5)

Other answers (8) used incorrect methods but with the clear intention of access-
ing the object by its id, again failing to reference the requested attribute. Examples
include:

Country.country_id(5)
Country.find_by_country_id(5)

For the second problem, a correct answer consists of obtaining an object by ex-
plicitly specifying the name attribute and its value, followed by the reference to the
population attribute. Six students produced expressions that correctly referenced
the object and the specified population attribute. Here is one example:

City.find_by_name("Toronto").population

1For Active Record, an object may be retrieved by its id using either the find method or the dynamically
defined find by_id method.

August 2, 2014

Computer Science Education article

Table 1. Frequency counts for last two problems

Remove by Language
No Explicit
attribute | attribute
Remove | No attribute value 2 8
by Name | Explicit attribute 0 4

The most common error (7 cases) involved efforts to obtain the correct object
without specifically indicating that it must match the name attribute. Incorrect
examples belonging to this case include:

city_toronto.city.population
County.population(Toronto)

Only one student obtained the correct object without resolving to the required
population attribute:

City.find_by_name(’Toronto’)

The last two problems ask students to provide an expression that removes an
object from an array by specifying its name attribute in one case (Problem RN) and
specifying its language attribute in another case (Problem RL). Half the students
were presented Problem RN and then RL as the third and fourth problems. The
other half were presented Problem RL and then RN.

For both answers, a correct answer requires obtaining the object by explicitly
referencing the attribute. Student answers for this case include:

country_list.remove(Country.find_by_name(’France’))

¢ = Country.find_by_language(’Norwegian’)
country_list.remove(c)

Student examples that incorrectly omitted the explicit attribute include:
country_list.remove(’France’)
country_list.remove(’Norwegian’)

Fourteen of the sixteen students provided answers to both problems. These an-
swers were categorized and counted by whether the attribute was explicitly refer-
enced in order to obtain the whole object. Table 1 presents the frequencies of how
each student responded. For example, two students (upper-left cell) specified just
the value (“France” for RN and “Norwegian” for RL) while omitting the attribute
(name for RN and language for RL) for both problems. Eight students (upper-
right cell) correctly referenced the attribute for problem RL while omitting it for
problem RN. In contrast, no student correctly referenced the attribute for problem
RN while omitting it for problem RL.

To test for a significant pair-wise difference between the Remove-by-name (RN)
problem and the Remove-by-language (RL) problem, an answer was scored as a
1 if it included an explicit reference to the required attribute (name for RN and
language for RL) and 0 if the attribute is omitted. The non-parametric sign test
on the pair-wise difference produces a significant two-tailed p-value of 0.0078.

10

August 2, 2014

Computer Science Education article

5.4. Discussion

Answers to all four problems produced results that are consistent with the
metonymy-based analysis. That is, students are more likely to use identifying at-
tributes in place of whole objects, and vice versa, than if the attributes are merely
descriptive. In problem 1, almost all students produced the whole object with-
out resolving to the identifying name attribute (Problem 1). In contrast, only one
student produced just the whole object without some reference to the population
attribute. These findings replicate the qualitative findings from the previous study
with similar problems (C. S. Miller, 2012). Moreover this present study rules out
effects due to presentation order by reversing the order of the last two questions
for half of the participants.

Returning to the insights of the preceding section, the study’s results demonstrate
each of them:

(1) Results produce reference substitutions: most student responses involved of-
fering a reference that was different than the correct reference.

(2) Observed substitutions commonly follow part-whole structural relationships:
most substitutions involve providing a reference to the whole object (e.g.
country object) in place of the attribute (e.g. name) and vice versa.

(3) Substitutions are more common with identifying attributes: substitutions
were significantly more common using the identifying name attribute than
the descriptive language attribute.

Perhaps most compelling is the finding that none of the participants fully ref-
erenced the name attribute while also omitting the language attribute. Consistent
with findings from cognitive linguistics, constructions involving salient or identify-
ing attributes are strong candidates for metonymic use.

While this first experiment provides some evidence that the kind of attribute
contributes to reference-point errors, it leaves open the possibility that the word-
ing structure in the question is the primary contributor. In particular, it is possible
that the phrase ”"the country named France” invokes the reference error, but the
phrase ”the country whose name is France” would less likely invoke the error. The
next study explores this possibility by controlling question structure and varying
attribute type across comparable questions. At the same time, the next study ex-
plores a broader range of reference-point errors with a larger sample from multiple
web development courses.

6. Experiment 2

The first experiment demonstrated a variety of reference-point errors consistent
with the use of metonymy. It revealed students producing an object when the
question asked for a naming attribute. It also revealed cases where students are
more likely to reference just the attribute when the whole object was required.
However, the first experiment was limited in several ways. It did not systematically
vary the type of attribute over a range of questions, nor did it fully control for word
structure. Finally, the first experiment involved a relatively small sample from one
web development course.

This second study addresses the limitations of the first experiment. It makes
use of two new data models: Part and Manual. Both models have identifying at-

11

August 2, 2014

Computer Science Education article

tributes (name for the Part model and title for the Manual model) and descriptive
attributes (e.g. color, weight, level). Based on these models, six new questions were
developed. Since none of these new questions involve relations between models, the
introductory examples were further simplified. This change permitted the inclusion
of students from less advanced courses.

The first two questions were similar to the first two questions in the preliminary
study in that the question asked for an attribute, which must be obtained from the
object:

(1) The part weight with id 205.
Answer: Part.find(205).weight

(2) The name of the part whose tag is 'm108’.
Answer: Part.find_by_tag(’'m108’).name

Note that the first question resolves to a descriptive attribute and the second
question resolves to an identifying attribute. While both questions involve find
operations, the focus of analysis is whether students will add the explicit attribute
reference (i.e. weight or name) at the end of their expression. In order to control
for effects of word structure, a second set of questions was created, which uses
identical language except the two attributes of interest were swapped:

(1) The part name with id 205.
Answer: Part.find(205).name

(2) The weight of the part whose tag is 'm108’.
Answer: Part.find_by_tag(’'m108’).weight

Randomly assigning the two versions to students allows us to explore the effect of
the attribute while controlling for all other language in the question. A metonymy-
based interpretation predicts that students are more likely to omit the identifying
attribute (i.e. name) than the descriptive attribute (i.e. weight).

Four additional questions were created that require object references derived
from the attribute. Again, both identifying attributes (i.e. name and title) and
descriptive attributes (i.e. color and level) were used. Like the first experiment, two
of these questions involved deleting an object from an array. This time, however,
two different word structures were deliberately selected:

(3) Provide ruby code that uses the remove method to delete the 'wheel’ part
from the parts_list array.
Answer:
part_obj = Part.find_by_name("wheel’)
parts_list.remove(part_obj)
(4) Provide ruby code that uses the remove method to delete the manual whose
title is “Model Painting” from the manuals_list array.
Answer:
manual_obj = Manual.find_by_title(’Model Painting’)
manuals_list.remove(manual_obj)

To successfully answer the question 3, the student must infer the attribute name
and include it in the answer. Question 4 explicitly includes all required elements.
In this presented set, the stated elements are identifying attributes (i.e. name and
title). In the alternate version, questions 3 and 4 use descriptive attributes (i.e.
color and level) as will be presented for questions 5 and 6.

12

August 2, 2014 Computer Science Education article

Finally, questions 5 and 6 introduce a display method that also requires an object
reference derived from an attribute:

(5) Provide ruby code that uses the display method to display the ’green’ part.
Answer:
part_obj = Part.find_by_color(’green’)
part_obj.display
(6) Provide ruby code that uses display method to display the manual whose
level is “advanced”.
Answer:
manual-obj = Manual.find_by_level(’advanced’)
manual_obj.display

In this presented set, the stated elements are descriptive attributes (i.e. color and
level). In the alternate version, questions 5 and 6 use identifying attributes (i.e.
name and title).

Note that the six questions from each set uses different wording so that a student
answer is less likely to be influenced by previous questions. At the same time,
identical language, except for the swap of identifying and descriptive attributes, is
used across the two sets of questions.

The interpretation based on metonymy predicts that references involving de-
scriptive attributes are more likely to be correctly stated than those based on
identifying attributes. For questions 1 and 2, the prediction is that students are
more likely to add the descriptive attribute to the object than the identifying at-
tribute. For questions 3, 4, 5 and 6, the prediction is that students are more likely
to retrieve an object based on the explicit mention of the attribute if a descrip-
tive attribute is involved than an identifying object. Note that for these last four
questions, the difference between a correct response and the predicted incorrect
response includes both an object reference (with a find method) and the attribute.
With that difference in mind, analysis of student answers will include noting both
object reference and attribute reference. For comparison, a third coding category
will note additional errors in the student response.

6.1. Method

The two sets of the six ORM questions described in the previous section were
assembled as an exercise quiz. The appendix provides the actual instructions with
examples (Appendix C) and both sets of the exercise questions (Appendix D).

The ORM problems were offered as an exercise in three web development courses
at a large university. One course (IT 231) had three participating sections. IT 231 is
an introductory server-side course that has one client-side course as a prerequisite.
The second course (IT 232) had one participating section. IT 232 has a general
programming course and IT 231 as prerequisites. The third course (IT 432) is a
server-side web development course targeted for graduate students who are not
programmers. I'T 432 has one client-side programming course as a prerequisite. All
courses used Ruby on Rails and the Active Record ORM for the coursework.

The two versions of the exercise were randomly assigned by alternately distribut-
ing them to individual students. While the exercise was offered to all students,
students actively chose to participate in the study by submitting their answers in
a sealed envelope, which were then turned over to the study’s investigator. Forty

13

August 2, 2014 Computer Science Education article

Table 2. Proportions for each Coding Category

Question | Attribute Attribute | Object | Otherwise
Number Type N | Present | Present | Correct
1 Descriptive | 19 0.63 0.95 0.63
Identifying | 21 0.33 0.95 0.81
2 Descriptive | 20 0.90 0.95 0.40
Identifying | 17 0.41 0.88 0.47
3 Descriptive | 18 0.17 0.22 0.89
Identifying | 18 0.06 0.06 0.72
4 Descriptive | 18 0.33 0.39 0.78
Identifying | 18 0.11 0.06 0.72
) Descriptive | 16 0.38 0.88 0.69
Identifying | 18 0.17 0.83 0.89
6 Descriptive | 15 0.47 0.60 0.60
Identifying | 18 0.33 0.72 0.72

students (34 male, 5 female, 1 unspecified) submitted answers for analysis. The
average age was 24 and the average number of prior programming courses was
3. Since the prerequisites to the courses included web development courses cover-
ing HTML and CSS, it is likely that these courses were included in the count of
programming courses.

6.2. Results

The 40 response sheets produced 216 responses and included sheets with only some
of the questions answered. All 216 responses were evaluated and coded using the
following definitions:

Attribute present Coded as one if the experimental attribute is present any-
where in the student answer. Otherwise, coded as zero.

Object present Coded as one if the student answer includes evidence of ob-
ject use. The object must ostensibly represent the whole database record and
not just an attribute (which technically are objects too). Evidence includes
use of a find method or an object-like reference (e.g. using the class name)
followed by dot (e.g. green_obj.display or green_part.display). Otherwise
(e.g. green.display), coded as zero.

Otherwise correct Coded as one if the answer was otherwise correct, not in-
cluding the above errors. Also, errors involving quotations and capitalization
were not considered. Presence of any other errors warranted a coding of zero.

The 216 responses were independently coded by the author and one other eval-
uator. The resulting codes were then compared revealing an agreement on 202
(94%) of the attribute-present code, 198 (92%) object-present code and 179 (83%)
otherwise correct code. The student responses for differing codes were reexamined
and the differences resolved by correcting for obvious evaluator errors or by further
clarifying the coding rules. Table 2 shows the resulting proportions for the three
coding categories, broken down by question number and attribute type.

The next subsections review the results in detail by coding category. For each
coding category, I first examine the within-subject effect of attribute (descriptive
vs. identifying) for all complete sets of answers (N=29). The net effect for each

14

August 2, 2014 Computer Science Education article

08 T T T T T T
0.6 . .

04 | [I -

Proportion Difference
o
J
i

_0.8 1 1 1 1 1 1
1 2 3 4 5 6

Question Number

Figure 4. Proportion differences for attribute-present coding.

student participant is obtained by averaging their respective codes, where descrip-
tive attribute questions are scored positively and identifying questions are scored
negatively. Consequently, the net effect per participant ranges from -1 to 1 with 7
possible values. Assuming approximate normality in the distribution, a t-test can
then be applied to determine if there is a significant net effect across all students
with complete answer sets. Finally between-subject analyses will show the effects of
attribute type for each individual question. These between-subject analyses draw
upon all 216 responses.

6.2.1. Attribute-present results

The mean net difference between attribute types on the presence of the attribute
in the answer was 0.12, meaning that questions with the descriptive attribute more
frequently produced answers with the varying attribute present. A two-tailed t-test
reveals a significant net effect, #(28) = 3.55, p = 0.0014. Between-subjects effects
for each question are graphically depicted in Figure 4. The plotted points indicate
the proportion differences between the questions with descriptive attributes and
those with identifying attributes. Points above the zero line indicate that the at-
tribute was more frequently present in the answer for questions with descriptive
attributes than for those with identifying answers. The limiting bars depict exact
95% confidence intervals for the differences.

6.2.2. Object-present results

The mean net difference between attribute types on the presence of the object
in the answer was 0.03, meaning that questions with the descriptive attribute
(slightly) more frequently produced answers showing evidence of the object. A
two-tailed t-test does not reveal a significant net effect, #28) = 0.50, p = 0.62.

15

August 2, 2014 Computer Science Education article

08 T T T T T T
0.6 | [.
0.4 |)) 8
o *
2
o 02¢F i
E L 2
= *
a *
c O a
0
£ *
gx 02| .
o
-0.4 | 8
-0.6 | .
_08 1 1 1 1 1 1
1 2 3 4 5 6

Question Number

Figure 5. Proportion differences for object-present coding.

Between-subjects effects for each question are graphically depicted in Figure 5.
The plotted points indicate the proportion differences between the questions with
descriptive attributes and those with identifying attributes. Points above the zero
line indicate that the object was more frequently present in the answer for questions
with descriptive attributes than for those with identifying answers. The limiting
bars depict exact 95% confidence intervals for the differences.

6.2.3. Otherwise correct results

The mean net difference between attribute types on the otherwise correctness of the
answer was -0.03, meaning that questions with the identifying attribute (slightly)
more frequently produced answers that were otherwise correct (ignoring errors
missing attribute and object). A two-tailed t-test does not reveal a significant net
effect, #(28) = -0.96, p = 0.34. Between-subjects effects for each question are graph-
ically depicted in Figure 6. The plotted points indicate the proportion differences
between the questions with descriptive attributes and those with identifying at-
tributes. Points above the zero line indicate that students more frequently produced
answers that were otherwise correct for questions with descriptive attributes than
for those with identifying answers. The limiting bars depict exact 95% confidence
intervals for the differences.

6.3. Discussion

The overall net effect of attribute type on the presence of the varying attribute
was reliably consistent with the metonymy-based prediction. In particular, when
working with identifying attributes, students were more likely to reference just the
object when asked for the attribute and more likely to omit the attribute name
when the problem called for the object. Consistent with the use of metonymy,

16

August 2, 2014 Computer Science Education article

08 T T T T T T
0.6 4

0.4 i i

Proportion Difference
o
J
i

_0.8 1 1 1 1 1 1
1 2 3 4 5 6

Question Number

Figure 6. Proportion differences for otherwise-correct coding.

students substituted object for identifying attribute, and vice versa, in favor of
the simpler expression. Because other possibly contributing factors were effectively
counter-balanced across two sets of questions, the statistically significant effect
provides strong evidence that just varying the attribute affects student answers.

A potential concern is that the effect from varying the attribute is not caused by
its type (i.e. identifying vs. descriptive) but by some other characterizing difference
among the attributes. Perhaps most notable is the presence of the weight attribute
as one of the examples in the instructional materials (presented in Appendix C).
Seeing its use there might prompt more students to attach it to the object than for
the comparable question with the name attribute. To some extent, the potential
effect from the example is mitigated by several differences in how it appears in the
example and how it appears in questions 1 and 2. First, the English description
in the example differs from the wording in the questions. Second, the example ex-
pression just uses an object, but the questions require an object retrieval and then
a reference to the attribute. Nevertheless, the attribute’s presence in the example
may account for an increased presence in questions 1 and 2. To isolate possible in-
terference from the example, an additional analysis was conducted with just the last
four questions, none of which used attributes in the examples on the instructional
page. Subtracting average codes for identifying-attribute questions from those of
descriptive-attribute questions produces a range of 5 possible values for each of
the 32 students who completed all four questions. Given the reduced range of pos-
sible values, the non-parametric Wilcoxon ranked sign test was applied since it
makes no assumptions on distribution. This test produces a two-tailed p-value of
0.048. This significant difference provides more confidence that the attribute type
is influencing student responses. In any case, more conclusive evidence would come
with additional studies involving a range of identifying and descriptive attributes
in otherwise controlled questions.

More nuanced is the effect on presence of object. As already noted, questions

17

August 2, 2014

Computer Science Education article

1 and 2 do not pertain to the metonymy-based interpretation since the object
retrieval does not involve the manipulated attribute. Consequently no effect is pre-
dicted. Questions 3 and 4 are pertinent and indeed they produced results consistent
with the interpretation’s prediction. Most notable is the difference for question 4,
whose confidence interval nearly clears the zero mark. Moreover, averaging the
proportions for questions 3 and 4 reveals a significant two-tailed difference using a
Wilcoxon two-sample test (p = 0.030).

In contrast to questions 3 and 4, questions 5 and 6 do not produce the predicted
effect on presence of object. A closer examination of these questions offers an
explanation. Both correct answers require placement of an object before the dot
and method name:

example_object.display
An answer without an object is conspicuously missing:
.display

The prominence of the object may override the effect of attribute type and thus
explain why no reliable object-present differences were produced for questions 5
and 6.

The results revealed no net effect of attribute type on other kinds of errors.
This finding is useful in that it shows how the metonymy-based interpretation
effectively isolates the kinds of errors that result by varying the attribute in terms
of its identifying qualities. Most useful is the observation that the presence of the
weight attribute in the examples did not produce more success in this category for
questions 1 and 2. In fact, students did worse (albeit not statistically reliably so)
for the questions involving the weight attribute than those involving the identifying
name attribute.

Given the goal of isolating the effect of attribute type, the experiment was not
designed to explore other factors such as sentence structure and question order.
Nevertheless some results indicate a likely effect based on the wording structure
in the question. Table 2 shows that, for descriptive attributes, more answers (cor-
rectly) included the object for question 4 (39%) than for question 3 (22%). One set
of student responses illustrates this difference. For question 3, where the attribute
name (i.e. color) must be inferred, the student provided the following answer:

part_list.remove(’green’)

Question 4 explicitly names the attribute (i.e. level) in the question. The student
provided the following answer for this question:

part_list.remove(manual_list.find_by_level(’advanced’))

In the margin, the student had underlined ‘level’ in the question and wrote, “This
word is throwing me off.” A plausible interpretation is that the appearance of the
attribute name in question 4 prompted the student to include a find method and
the attribute name in the answer (however note that the answer has other mis-
takes). While the attribute’s effect in the question is compelling, the experiment
did not control for question order, nor for the attributes used in the questions. It
is possible that a second question prompted additional thinking or that choice of
descriptive attribute (e.g. color or level) have their own effects. Additional study
would be required in order to conclusively identify wording structure as a con-

18

August 2, 2014

Computer Science Education article

tributing factor to reference-point errors.

7. General Discussion

The experiments provide evidence that an attribute’s identifying trait, as used
with human language and communication, contributes to reference-point errors.
Previous work has also identified student programming errors that carry over from
human language and has characterized them as misconceptions (Clancy, 2004).
While insight from metonymy usefully predicts the errors in this paper, its status
as a misconception is open to debate. This section explores several possibilities.

Students arguably do not have a coherent theory of metonymy and explicitly
apply it when writing a programming statement. More plausibly, students may have
a false expectation of a computer’s ability to successfully infer the intended referent,
without realizing that such an inference would require domain knowledge and a
representation of the programmer’s goal. For this interpretation, students at least
have some awareness of the difference between the intended referent and the stated
item, just as they know the difference between a loaf of bread and its wrapper. This
interpretation thereby supposes that the students have a concrete expectation that
the computer will successfully interpret their statement, an expectation that may
be based on their previous experience with language.

A useful comparison for misapplied experience includes accounts of how stu-
dents acquire physics knowledge. diSessa (1993) asserts that novice students pos-
sess “pieces of knowledge” based on their previous experience with the world. Each
piece of knowledge, called a phenomenological primitive (p-prim), does not act as
a coherent theory of understanding and is not necessarily consistent with other
p-prims. For example, a student may predict that a cannonball falling from a mast
of a moving ship would land behind the ship, rather than have the correct under-
standing that the ball would land at the base of the mast. This naive prediction is
based on the student’s experience that objects falling from a moving vehicle tend
to fall behind the vehicle (assuming air resistance is a significant factor). With
this interpretation, the student’s incorrect prediction based on previous experience
is similar to that of a metonymy-based reference error in programming, although
physics p-prims are probably cued by the physical properties of the situation. In
contrast, any effort to establish the p-prim equivalent for computational learning
would involve identifying cues relating to language or communication.

A different possibility is that students do not even possess a concrete expecta-
tion that their intended referent will be successfully resolved by the compiler or
interpreter. Perhaps they do not distinguish between the stated referent and the
intended referent. In this case, prior use of identifying attributes may have nev-
ertheless induced a habit of communication, which is effective for inter-personal
conversation but incorrect for human-to-computer commands. Even in these cases,
domain knowledge may play a role in how students construct a referent in their
code. A student’s mental model of domain entities contain the connecting relation-
ships for indicating an intended referent. These mental models correspond to what
Lakoff (1987) calls idealized cognitive models (ICMs). As we saw, hypothesizing
a student’s ICM of a country’s attributes and relationships, allowed us to predict
likely reference errors when students construct an expression. An interesting ques-
tion for future study is whether students are less likely to make reference mistakes
on abstract structures that do not correspond to real-world entities. On one hand,

19

August 2, 2014

Computer Science Education article

an abstract structure with no corresponding real-world ICM may prevent referent
substitutions. On the other hand, lack of supporting real-world knowledge might
incur additional errors.

Whether prior usage of metonymy has given a student a false expectation for how
a computer resolves referents or has merely encouraged a habit of using identifying
attributes in place of the whole object, the metonymy-based analysis demonstrates
the utility of examining how prior experiences may negatively influence how stu-
dents learn computational concepts.

8. Future Directions

The role of metonymy in student errors suggests several directions for educa-
tion research and instructional strategies. For assessing student achievement, a
metonymy-based analysis may be useful for constructing diagnostic problems that
generalize across multiple languages and even multiple programming paradigms. As
we have seen, student errors that parallel metonymy-based language usage occur in
a variety of contexts. To the extent that the metonymy-based analysis unifies stu-
dent errors across various contexts, we would expect this class of errors to predict
similar errors but in other contexts. This analysis may then aid further develop-
ment of assessment instruments. Moreover, given that reference-point construction
errors are not unique to any particular language, further study may be particularly
useful for constructing language-independent assessments such as the assessment
developed by Tew and Guzdial (2011).

For developing effective instructional strategies, the role of metonymy may offer
guidance for teaching students how to successfully refer to the correct referent in
programming statements. One possible intervention is to explicitly teach students
the concept of metonymy in everyday language but then discuss how its practice
does not work for computer statements. For topics where it is common to misstate
the referent in a statement, the instructor can show examples and refer back to the
lesson on metonymy. Explicit awareness of metonymy can support students in two
ways. First, it illustrates a programming pitfall that generalizes to many circum-
stances. Second, its examples can make use of situations that students know well
(e.g. making sandwiches). Use of familiar situations effectively reduces the cogni-
tive load of the example and allows students to focus on the underlying relationship
between the stated referent and the implied referent.

While the experiments presented students with some examples, the examples
included minimal explanation. Nor is it clear that students took time to study
the examples before completing the exercise since they were already familiar with
the content. Consequently students may benefit by seeing worked examples after
introducing the concept of metonymy to students. While problem solving is an
important end-goal for computing disciplines (see Robins, Rountree, & Rountree,
2003 for a discussion of its role in programming), previous research indicates that
novices greatly benefit from seeing worked examples in the early stages of learn-
ing. Extensive studies across a broad range of technical disciplines demonstrate
advantages to presenting worked examples (see Kirschner, Sweller, & Clark, 2006
for a review). More specific to computing and reference construction, a study on
references shows the relative advantage of studying examples in place of working
practice problems (C. S. Miller & Settle, 2011).

Showing worked examples includes the practice of live-coding demonstrations

20

August 2, 2014

Computer Science Education article

endorsed by Robins et al. (2003). Teaching metonymy and the pitfalls of reference
errors are particularly amenable to instruction based on these live demonstra-
tions. Working a live example gives the instructor the opportunity to show the cor-
rect reference-point construction and contrast it with the seemingly natural—yet
incorrect—metonymic construction. In this sense, careful instruction of reference-
point constructions, here supported with everyday examples, addresses a call to
teach students general purpose strategies that promote their development as what
Robins et al. (2003) characterize as “effective novices.” In this way, these live ex-
amples demonstrate habits that serve students in a broad range of contexts.

Teaching metonymy in the context of programming also provides another oppor-
tunity to promote computational thinking to general audiences. Computational
thinking is a collection of principles and mental habits from the computing dis-
ciplines that have general application for non-computing students (Guzdial, 2008;
Wing, 2006). Lately its pedagogy has been further developed for other disciplines
(Goldberg, Grunwald, Lewis, Feld, & Hug, 2012; Perkovié¢, Settle, Hwang, & Jones,
2010). The analysis of metonymy and its contrast to human-computer communica-
tion provides yet additional content and examples for cross-disciplinary coursework
whose topics involve communication, cognition and language. Not only does it ex-
pose students to some of the intricacies of human communication, using computa-
tional constructs no less, but it also illustrates limitations of computer languages.

Finally, while the empirical studies of this paper focused on object-attribute ref-
erence errors, a metonymy-based analysis may provide useful insight to a broader
range of reference errors, including those surveyed at the beginning of this paper.
Promising candidates include array errors and hash reference errors. If it is possible
to manipulate the identifying qualities of values, indices or keys, an analysis may
reveal when reference-point errors for these constructs are likely to occur. If suc-
cessful, the analysis presented in this paper provides some direction for broadening
its coverage.

Acknowledgements

I gratefully acknowledge John Lalor for serving as the second data coder of the ex-
periment 2 results. In addition, both he and Lauren Lucchese pilot-tested questions
for the study. A special thanks goes to Ed Allemand, James DeBettencourt, Laura
McFall, Kumail Razvi and John Rogers, who helped me conduct the experiments
in their classes. Finally I thank the three anonymous reviewers, whose detailed
comments greatly contributed to the final version of this article.

References

Anjaneyulu, K. S. R. (1994). Bug analysis of pascal programs. SIGPLAN Not., 29(4),
15-22.

Bachle, M., & Kirchberg, P. (2007). Ruby on Rails. Software, IEEE, 2/(6), 105 -108.

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A major source of miscon-
ceptions in novice programmers. Human—Computer Interaction, 1(2), 133-161.

Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program.
In S. Fincher & M. Petre (Eds.), Computer science education research (pp. 85-100).
Taylor and Francis Group, London.

21

August 2, 2014

Computer Science Education article

Daly, C. (1999). Roboprof and an introductory computer programming course. SIGCSFE
Bull., 31(3), 155—-158.

Davis, J., & Rebelsky, S. A. (2007). Food-first computer science: starting the first course
right with PB&J. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical sym-
posium on computer science education (pp. 372-376). New York, NY, USA: ACM.

diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10,
105-225.

Garner, S., Haden, P., & Robins, A. (2005). My program is correct but it doesn’t run: a pre-
liminary investigation of novice programmers’ problems. In Ace ’05: Proceedings of
the 7th australasian conference on computing education (pp. 173-180). Darlinghurst,
Australia, Australia: Australian Computer Society, Inc.

Gibbs, R. W., Jr. (1999). Speaking and thinking with metonymy. In K.-U. Panther &
G. Radden (Eds.), Metonymy in language and thought (pp. 61-76). Amsterdam:
John Benjamins.

Goldberg, D. S., Grunwald, D., Lewis, C., Feld, J. A., & Hug, S. (2012). Engaging computer
science in traditional education: the ECSITE project. In Proceedings of the 17th acm
annual conference on innovation and technology in computer science education (pp.
351-356). New York, NY, USA: ACM.

Guzdial, M. (2008, August). Education: Paving the way for computational thinking.
Commun. ACM, 51(8), 25-27.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions.
SIGCSE Bull., 29(1), 131-134.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting java
programming errors for introductory computer science students. In SIGCSE ’03:
Proceedings of the 34th SIGCSE technical symposium on computer science education
(pp. 153-156). New York, NY, USA: ACM.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational Psychologist,
41(2), 75-86.

Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the
mind. Cambridge Univ Press.

Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: The University of
Chicago Press.

Langacker, R. W. (1993). Reference-point constructions. Cognitive Linguistics, 4 (1),
1-38.

Lewandowski, G., & Morehead, A. (1998). Computer science through the eyes of dead
monkeys: learning styles and interaction in CS 1. SIGCSE Bull., 30(1), 312-316.

Miller, C. S. (2012). Metonymic errors in a web development course. In Proceedings of
the 13th annual conference on information technology education (pp. 65-70). New
York, NY, USA: ACM.

Miller, C. S., Perkovié, L., & Settle, A. (2010). File references, trees, and computational
thinking. In Proceedings of the fifteenth annual conference on innovation and tech-
nology in computer science education (pp. 132-136).

Miller, C. S., & Settle, A. (2011). When practice doesn’t make perfect: Effects of task
goals on learning computing concepts. ACM Transactions on Computing Education
(TOCE), 11(4), 22.

Miller, L. A. (1981). Natural language programming: Styles, strategies, and contrasts.
IBM Systems Journal, 20(2), 184-215.

Noble, J., Biddle, R., & Tempero, E. (2002). Metaphor and metonymy in object-oriented
design patterns. Aust. Comput. Sci. Commun., 24 (1), 187-195.

Panther, K.-U., & Radden, G. (1999). Introduction. In K.-U. Panther & G. Radden (Eds.),
Metonymy in language and thought (pp. 1-14). Amsterdam: John Benjamins.

Perkovié, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational

22

August 2, 2014 Computer Science Education article

thinking across the curriculum. In Proceedings of the fifteenth annual conference on
innovation and technology in computer science education (pp. 123-127). New York,
NY, USA: ACM.

Radden, G., & Kovecses, Z. (1999). Towards a theory of metonymy. In K.-U. Panther
& G. Radden (Eds.), Metonymy in language and thought (pp. 17-60). Amsterdam:
John Benjamins.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137-172.

Tew, A. E., & Guzdial, M. (2011). The FCSI1: a language independent assessment of
CS1 knowledge. In Proceedings of the 42nd acm technical symposium on computer
science education (pp. 111-116). New York, NY, USA: ACM.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

23

August 2, 2014 Computer Science Education article

Appendix A: Exercise instructions and examples for Experiment 1

Exercise for Models and Relationships

A Country model and a City model have been created with the following attributes:

Country City
name: string name: string
population: integer population: integer
language: string
continent: string country_id: integer

The following relationships have been declared:
A city belongs to a country.
A country has many cities.

The next page asks you to provide ruby expressions and statements. Below are some examples that you
might find useful as a reference.

Assume the following assignments:
france country = Country.find by name('France')
london city = City.find by name('London')

Note what the following ruby expressions produce:
City.all — produces an array of all City objects
Country.where ('population > 1000') — produces an array of country objects with
population greater than 1000
france country.cities —produces an array of City objects that belong to
france_country

london_city.country — produces the Country object

These statements write out the languages for each country:
country list = Country.all
country list.each do |c]
puts c.languages
end

24

August 2, 2014

Computer Science Education article

Appendix B: Exercise Problems for Experiment 1

The following problems were those used for Experiment 1. In one version, the last
two problems were presented in the order below. In the second version, the last two
problems were presented in the opposite order.

For the following items, provide the ruby code that produces the following:

(1) The country name with id 5.
(2) The population of the city of Toronto.

Ruby has a remove method that allows an object to be deleted from an array
of objects. For example if word_list has the contents [’cat’, ’dog’, ’cow’,
’horse’], then word list.remove(’dog’) would delete the string ’dog’ from
the array. That is, the contents of word_list would then be [’cat’, ’cow’,
’horse’].

For the next two questions, assume that country_list is an array of Country objects.

(3) Provide ruby code that uses the remove method to delete the country named
"France’ from the country_list array.

(4) Provide ruby code that uses the remove method to delete the country whose
language is “Norwegian” from the country_list array.

25

August 2, 2014 Computer Science Education article

Appendix C: Exercise instructions and examples for Experiment 2

Database and Models Exercise
A Part model and a Manual model have been created with the following attributes:

Part Manual
name: string title: string
color: string pages: integer
tag: string format: string
weight: integer level: string

Note that the Rails ActiveRecord framework automatically assigns an integer id to each record.

Below are some example objects belonging to the Part model:

id | name | color | tag | weight
201 | hood | red x45 | 12
202 | wheel | black | y65 | 5
203 | door | green | z56 | 14

Below are some example objects belonging to the Manual model:

id title pages | format level
501 | Building Models | 12 pamphlet | novice
502 | Model Painting | 76 paperback | intermediate
503 | Parts and Glue | 365 hardback | advanced

The next page asks you to provide ruby expressions and statements. Below are some examples that you might

find useful as a reference.

Rails ActiveRecord allows you to access an object and assign it to a variable:
hood part = Part.find(201)

glue manual = Manual.find by format ('hardback')

Given the two assignments above, note what the following ruby expressions produce:

glue manual.pages — produces the number of pages for the glue_manual object, which would be
365 using the examples in the above tables

hood part.weight — produces the weight for the hood_part object
Part.find by weight (14).tag - produces the tagfor part with weight of 14
Manual.find (608) .format - produces the format for the Manual object with id 608

26

August 2, 2014

Computer Science Education article

Appendix D: Exercise Problems for Experiment 2

The following problems were those used for Experiment 2. Both versions are pre-
sented.

D.1. Version A
For the following items, provide the ruby code that produces the following;:

(1) The part weight with id 205.
(2) The name of the part whose tag is 'm108’.

Ruby has a remove method that allows an object to be deleted from an array
of objects. For example if word_list has the contents [’cat’, ’dog’, ’cow’,
’horse’], then word list.remove(’dog’) would delete the string ’dog’ from
the array. That is, the contents of word_list would then be [’cat’, ’cow’,
’horse’].

For the next two questions, assume that parts_list is an array of Part objects and
that manuals_list is an array of Manual objects.

(3) Provide ruby code that uses the remove method to delete the 'wheel” part
from the parts_list array.

(4) Provide ruby code that uses the remove method to delete the manual whose
title is "Model Painting” from the manuals_list array.

Assume that a framework developer has added a new ActiveRecord method called
display that nicely displays the contents of a database object. It is invoked by
adding it to any ActiveRecord object. For example, if hood_part is a Part object,
its contents can be displayed with the following Ruby code:

hood_part.display

(5) Provide ruby code that uses the display method to display the ’green’ part.
(6) Provide ruby code that uses the display method to display the manual whose
level is ”advanced”.

D.2. Version B
For the following items, provide the ruby code that produces the following;:

(1) The part name with id 205.
(2) The weight of the part whose tag is 'm108’.

Ruby has a remove method that allows an object to be deleted from an array
of objects. For example if word_list has the contents [’cat’, ’dog’, ’cow’,
’horse’], then word list.remove(’dog’) would delete the string ’dog’ from
the array. That is, the contents of word_list would then be [’cat’, ’cow’,
’horse’].

For the next two questions, assume that country_list is an array of Country objects.

(3) Provide ruby code that uses the remove method to delete the 'green’ part
from the parts_list array.

27

August 2, 2014 Computer Science Education article

(4) Provide ruby code that uses the remove method to delete the manual whose
level is "advanced” from the manuals_list array.

Assume that a framework developer has added a new ActiveRecord method called
display that nicely displays the contents of a database object. It is invoked by
adding it to any ActiveRecord object. For example, if hood_part is a Part object,
its contents can be displayed with the following Ruby code:

hood_part.display

(5) Provide ruby code that uses the display method to display the 'wheel’ part.
(6) Provide ruby code that uses the display method to display the manual whose
title is "Model Painting”.

28

