
www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 23

SECURITY

Using Safety Properties to Generate
Vulnerability Patches
Z H E N H U A N G , D A V I D L I E , G A N G T A N , A N D T R E N T J A E G E R

A utomatic Program Repair (APR) methods attempt to fix vulner-
abilities in programs comprehensively and without introducing new
defects. Senx uses novel safety properties to generate patches, and

it succeeds in generating patches for 32 of 42 real-world vulnerabilities. We
explain how Senx works, compare it to other APR methods, and demonstrate
why Senx is better at repairing source code.

Fixing security vulnerabilities in a timely manner is critical to protect users from attacks
that exploit vulnerabilities. Unfortunately, a recent study shows that the average time to
release software patches for vulnerabilities is 52 days, and the bottleneck lies in creating
software patches [1].

Automatic Program Repair (APR) tools aim to automatically provide patches that fix vulner-
abilities. Most of them rely on a set of positive/negative example inputs to produce a patch
that makes the vulnerable program behave correctly according to these example inputs [4, 6, 7].
The patched program must pass the positive example inputs but raise errors on the negative
example inputs. But obtaining a complete set of example inputs is often difficult, and the
patched program may behave incorrectly on other inputs, or the vulnerability may still be
exploited by other inputs [8]. We refer to this traditional method as “example-based.”

We propose a different approach called “property-based” APR that relies on vulnerability-
specific, program-independent, human-specified safety properties. A safety property speci-
fies the condition on which a type of vulnerability cannot be triggered. For example, a safety
property for buffer overflow vulnerabilities can be that a program should never have access
beyond the bounds of a buffer.

Our property-based approach has three major advantages: 1) a small set of safety properties
can be defined once and applied on numerous programs without the need to specify anything
pertaining to each of the programs; 2) the properties are precise and complete by nature so
they work for all possible inputs; 3) it leverages a specific vulnerability’s context to generate a
customized and efficient patch for the vulnerability, as opposed to the nonspecific and often
inefficient patches generated by previous methods [5].

Property-based APR faces several outstanding challenges. First, it must identify the correct
property to enforce for a given vulnerability because the properties are vulnerability-specific.
Second, our goal is to generate source code patches that can be easily adopted by developers;
as a result, the safety properties must be expressed using program entities such as variables.
Third, the generated patches should affect program execution if and only if a safety property
is violated. Finally, the generated patches should incur minimum performance overhead.

To address these challenges, we have designed Senx to automatically generate source code
patches for security vulnerabilities using safety properties. We demonstrate the effectiveness
of Senx using three important classes of vulnerabilities: buffer overflows, bad casts, and inte-
ger overflows. Our evaluation demonstrates that Senx is able to produce correct patches for
over 76% of the vulnerabilities. And we believe that, in principle, Senx can generate patches
for any class of vulnerabilities for which a safety property can be specified.

Zhen Huang is an Assistant
Professor in the School
of Computing at DePaul
University. He earned his BASc
from Wuhan University, and his

MS and PhD from the University of Toronto.
He works on computer systems with an
emphasis on software security. 
zhen.huang@depaul.edu

David Lie received his BASc
from the University of Toronto
in 1998, and his MS and PhD
from Stanford University in
2001 and 2004, respectively.

He is currently a Professor in the Department
of Electrical and Computer Engineering at
the University of Toronto. He also holds
appointments in the Department of Computer
Science, the Faculty of Law, and is a research
lead with the Schwartz Riesman Institute for
Technology and Society. He was the recipient
of a best paper award at SOSP for this work.
David is also a recipient of the MRI Early
Researcher Award and the Connaught Global
Challenge Award. David has served on various
program committees including OSDI, USENIX
Security, IEEE Security & Privacy, NDSS, and
CCS. Currently, his interests are focused on
securing mobile platforms, cloud computing
security, and bridging the divide between
technology and policy. lie@eecg.toronto.edu

24 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Using Safety Properties to Generate Vulnerability Patches

Example-Based versus Property-Based
We now discuss the limitations of state-of-the-art APR tools. We use the program in Listing 1
as the target program, which is adopted from a real-world buffer overflow vulnerability CVE-
2012-0947 in a popular media stream processing library. The program takes a string and its
length as input, and outputs the reversed string. It outputs “” if an error occurs. Similar to the
real vulnerability, two functions are used, one to allocate the output buffer, and the other to
process the input string.

The buffer overflow happens when the size, specified from the command line, is smaller than the
actual length of the input string. To fix the buffer overflow, a check can be added to ensure that the
actual length of the string is smaller than the allocated size of the buffer into which it is copied.
Note that the buffer size is only known to main; so the check should be added at line 19 to compare
size against strlen(argv[2]). While a human developer can easily add this check, which indeed
was in the official patch for the vulnerability, it presents challenges for state-of-the-art APR tools.

 1 char* rev(const char *inp, char *out) {
 2 // reverse a string
 3 // inp is the input string
 4 // out is an output buffer
 5 if (inp != NULL) {
 6 int i, len = strlen(inp);
 7 // Failed to check if (len + 1 <= size_of_out)
 8 for (i = 0; i < len; i ++)
 9 out[i] = inp[len - i];
10 out[i] = '\0';
11 return out;
12 } else
13 return "###";
14 }
15
16 void main(int argc, char *argv[]) {
17 int size = atoi(argv[1]) + 1;
18 char *out = (char *)malloc(size);
19 // patch: if (strlen(argv[2]) + 1 > size) exit(1);
20 printf("%s\n", rev(argv[2], out));
21 }

Listing 1: A program that reverses an input string. It contains a buffer overflow in function rev.

Example-based approaches. Many APR tools rely on example inputs to fix vulnerabilities.
For example, SemFix and Angelix use test inputs to find path constraints needed to gener-
ate fixes [4, 6]. Table 1 presents typical test inputs needed to use such tools to fix the buffer
overflow for our example in Listing 1.

This approach has two drawbacks. First, the generated path constraints are often based on
the concrete values used in the test inputs instead of the relationships between program vari-
ables. Given the test inputs in Table 1, SemFix and Angelix would wrongly infer that the value
of argv[1] is not correlated with whether tests are positive or negative, based on the fact that it
has the same values in both positive and negative test inputs.

Dr. Tan is a Professor in
the Computer Science and
Engineering Department at
Pennsylvania State University.
He obtained his BE in computer

science from Tsinghua University, and his PhD
in computer science from Princeton University.
His research interests are computer security,
formal methods, and programming languages.
He currently serves on the DARPA ISAT study
group. He has also received multiple awards,
including a James F. Will Career Development
Professorship from 2016 to 2019, an NSF
CAREER Award, two Google Research
Awards, a Distinguished Reviewer Award at
the 2018 IEEE Symposium on Security and
Privacy, a Ruth and Joel Spira Excellence in
Teaching Award at Penn State, and some
best paper awards at academic conferences.
gtan@cse.psu.edu

Trent Jaeger is a Professor in
the Computer Science and
Engineering Department at
Pennsylvania State University.
Trent’s primary research

interests are systems and software security.
He has published over 150 research papers
and the book Operating Systems Security, which
has been taught in universities worldwide.
Trent has made significant contributions to
the Linux community, including mandatory
access control, integrity measurement,
process tracing, and namespace services.
Trent currently serves the computer security
research community on the Executive
Committee of ACM SIGSAC as Past Chair,
as Steering Committee Chair of NDSS, on
editorial boards of Communications of the
ACM and IEEE Security & Privacy, and on the
Academic Advisory Board of the UK’s Cyber
Body of Knowledge project.
tjaeger@cse.psu.edu

Type argv[1] argv[2] output expected output
P 1 A A A

P 2 AB BA BA

N 1 ABC CBA ###

N 2 ABC CBA ###

Table 1: Test inputs and outputs for the program in Listing 1. Type “P” test inputs are positive test inputs,
while type “N” test inputs are negative test inputs.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 25

SECURITY
Using Safety Properties to Generate Vulnerability Patches

Second, the approach is highly sensitive to the completeness of
test inputs. Because the length of the input string is smaller than
3 for positive tests whereas the length is not smaller than 3 for
negative tests, SemFix and Angelix would incorrectly derive that
strlen(argv[2]) < 3 needs to be added to the program to fix the
buffer overflow. The incorrect patch is generated due to the miss-
ing of a positive test input with strlen(argv[2]) > 2) in the test
suite. This illustrates that example-based tools can easily fail
when tests are missing in the test suite, which is notoriously hard
to make complete.

Property-based approaches. AutoPaG creates patches using
a predicate similar to a safety property [3]. But it handles only
one vulnerability type, buffer overflows, so it cannot generate a
correct patch if the vulnerability is of any other type. Moreover,
it would fail to produce a patch if the safety property needs to
be enforced in a location other than the function in which the
vulnerability occurs. As in our example, the patch should be
placed in the main function, but the buffer overflow occurs in
the rev function. Lastly, the patch it generates can incur high
performance overhead because it would add the patch to check
the buffer size inside the for loop on line 8 due to the fact that the
buffer overflow occurs within the loop.

Safety Properties
To generate a patch that fixes a vulnerability, Senx requires an
input to trigger the vulnerability. The input can be a proof-of-
concept exploit or an input generated by a fuzzer. With this input,
Senx generates a patch that will enforce the safety property
violated by the vulnerability.

A Senx patch can have one of two forms: 1) a check-and-error
patch that inserts a check to detect if a safety property no longer
holds and raises an error to direct program execution away from
the path where the vulnerability resides; 2) a repair patch that
modifies existing code to prevent a safety property from being
violated.

Each safety property corresponds to a particular vulnerability
class and is an abstract Boolean expression that will be mapped
to concrete variables in a program. We describe below the three
types of safety properties that Senx currently supports.

Sequential buffer overflows. A sequential buffer overf low
occurs when a sequence of memory accesses traversing a buffer
crosses from a memory location inside the buffer to a memory
location outside of the buffer. The Senx safety property for buffer
overflows defines two abstract objects: a memory access and a
buffer. The term buffer refers to any bounded memory region,
which may include structs, objects, or arrays. The term memory
access corresponds to an array access or pointer dereference
occurring inside a loop. This safety property covers both the case
when the memory access exceeds the upper range of the buffer

and the case when the memory access falls below the lower range
(sometimes called a buffer underflow).

Bad casts. A harmful memory access can result from an offset
from a base pointer beyond the upper bound of the buffer the base
pointer is pointing to. This type of vulnerability may occur for
several reasons, but it commonly occurs when a pointer is cast to
a type that is incompatible with the object the pointer points to.
The safety property for bad casts can prevent both bad casts for
simple structs and objects, as well as nested structs and objects.

Integer overflows. An integer overflow takes place when a vari-
able is assigned a value larger or smaller than what can be repre-
sented by the type of the variable. An integer overflow can lead
to a vulnerability when the result of the overflow is then used in
operations such as allocating a buffer, producing a buffer that is
far smaller than expected. Consequently, the safety property for
integer overflows checks that value used in certain operations is
not the result of an integer overflow.

For our prototype, we have started with these three vulnerability
classes. Nonetheless, they represent a good percentage of CVE
vulnerabilities. Based on our informal analysis of the vulner-
abilities published in CVE Details in 2018, the most popular
vulnerability categories are denial of service, code execution,
and overflow. By examining 100 randomly chosen CVE reports
for each of the three vulnerability categories, we find that
25% of CVE vulnerabilities are buffer overflows, bad casts, or
integer overflows. We believe the principles behind Senx can be
extended to other vulnerability classes, and we plan to do so as
our future work.

Senx
Senx aims to generate source code patches that can be easily
verified and adopted by developers. As shown in Figure 1, Senx
generates patches in four major steps: vulnerability identifica-
tion, predicate generation, patch placement, and patch synthesis.

Vulnerability Identification
In vulnerability identification, Senx runs a program with an
input that can trigger a vulnerability and outputs the violated

Figure 1: Workflow of Senx: each rounded rectangle represents a step in
Senx’s patch generation; each rectangle with vertical bars represents a
component of Senx.

26 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Using Safety Properties to Generate Vulnerability Patches

safety property, the vulnerability point (the program location
where the safety property is violated), and the source code
expressions for the execution trace. Senx runs the program using
concolic execution to generate the execution trace corresponding
to the vulnerability-triggering input. Senx records the execution
trace as source code expressions, which conform to the syntax
of the programming language of the target program, for synthe-
sizing a source code patch. To support complex data types such
as nested C/C++ structs, references to structs, and arrays with
pointers, Senx records the relationships between data objects and
the way data objects are referenced. This way Senx can recover
the full expression for a data object such as foo→f.bar[10].

Predicate Generation
During predicate generation, Senx takes the violated safety
property, which also implies the type of the vulnerability, and the
source code expressions generated by vulnerability identifica-
tion, and outputs a predicate required to prevent the violation
of the safety property. Senx maps the violated safety property
to concrete expressions over variables, constants, and function
calls in the form of the source code of the program.

For buffer overflows, Senx aims to insert the patch before the
loop where a set of sequential memory accesses occurred; so it
needs to extract expressions that represent the memory access
range for the memory accesses. Senx uses two complementary
loop analysis techniques: access range analysis and loop clon-
ing. Both of them take a function F in the target program and
an instruction inst that performs the faulty access in the buffer
overflow, and output the symbolic memory access range of inst.

Access range analysis. Senx computes the access range of
canonicalized loops. It relies on LLVM’s built-in loop canonical-
ization functionality to convert the loop into a standard form. It
starts with the innermost loop and iterates to the outermost loop,
and accumulates increments and decrements on the loop induc-
tion variables.

For each loop, Senx retrieves the loop iterator variable and its
bounds and the list of induction variables of the loop and their
update, the fixed amount that an induction variable is increased
or decreased by on each loop iteration. We use the loop in bar of
Listing 2 to illustrate how access range analysis can be applied
to nested loops.

 1 char *foo_malloc(x,y) {
 2 return (char *)malloc(x * y + 1);
 3 }
 4
 5 int foo(char *input) {
 6+ if ((double)(cols+1)*(size/cols)+1 >
 7+ rows * (cols+1) + 1)
 8+ return -1;
 9 char *output=foo_malloc(rows,cols+1);
10 if (!output)

11 return -1;
12 bar(p, size, cols, output);
13 return 0;
14 }
15
16 void bar(char *src,int size,int cols,char *dest) {
17 char *p=dest;char *q=src;
18 while (q < src+size) {
19 for (unsigned j=0;j<cols;j++)
20 *(p++) = *(q++);
21 *(p++) = ‘\n’;
22 }
23 *p = ‘\0’;
24 }

Listing 2: A buffer overflow in CVE-2012-0947 with a patch, lines prefixed
with “+”

In this example, Senx identifies j as the loop iterator variable,
whose bounds are 0 and cols; it also identifies j, p, and q as induc-
tion variables, each of which has an update of 1 for the innermost
for loop. Senx then symbolically accumulates the update to each
induction variable based on the number of loop iterations, which
is cols. Similarly, Senx finds q as the loop iterator variable, with
src as its lower bound and src+size as its upper bound, and q and
p as induction variables, whose accumulated update is size and
(cols+1)(size/cols)+1, respectively, for the while loop enclosing
the inner for loop.

Following the analysis of all the loops enclosing inst, Senx per-
forms reaching definition dataflow analysis to find the definition
that reaches the beginning of the outermost loop for the pointer
ptr used by inst. In this example, we have ptr=p whose initial
value is dest before the while loop. By adding the initial value
dest to the accumulated update of p, we will have dest+(cols+1)
(size/cols)+1. Therefore Senx decides the access range as
[dest,dest+(cols+1)(size/cols)+1].

Loop cloning. Senx cannot apply access range analysis to loops
that LLVM cannot canonicalize. Instead it uses loop cloning
for these loops. At a high level, loop cloning creates new code to
compute the number of loop iterations. Senx produces the new
code from a clone of the code of the loop in the target program, but
removes the code that causes side effects. The new code is used
by the generated patch to return the access range. Details on loop
cloning can be found in [2].

Function calls. For certain cases, Senx can extract expressions
containing function calls. Senx needs to ensure that the gener-
ated predicate does not call functions that have side effects.
We define three types of side effect: 1) a change to the memory
accessible outside of a function; 2) an invocation of a system call
that has external impact; 3) an invocation of a function that has
any side effect.

Senx uses a flow-sensitive, context-insensitive intraprocedural
static analysis to identify the list of functions that do not have

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 27

SECURITY
Using Safety Properties to Generate Vulnerability Patches

any side effect. Senx initializes the list with functions on a
whitelist and then adds each function that has no side effect to
the list by analyzing every function of a target program.

Patch Placement
In patch placement, Senx uses the vulnerability point found in
vulnerability identification and the predicate generated in predi-
cate generation to find a program location to insert the patch.
The patch location must be a point where all necessary variables
in the predicate are in the scope. If variables in the predicate
are from different scopes, Senx uses expression translation to
translate the predicate into a new one formed from variables in a
common scope. For check-and-error patches, Senx also requires
the scope to have some error handling code to call. It uses Talos
[1] to find a suitable error handling code.

Expression translation. Senx must produce a patch predicate
that can be evaluated in a single function scope, because Senx
generates source code patches. In some cases, a target program
computes the buffer allocation size in one function scope but the
memory access range in a different function scope. As a result,
the expression representing the allocation size and the expres-
sion representing the memory access range are not valid in a
single function scope.

To solve this problem, expression translation translates an
expression from the scope of a source function to an equivalent
expression in the scope of a destination function, without the
need to add new function parameters and call arguments. This
process is called converging the predicate. Expression transla-
tion exploits the equivalence between the arguments that are
passed to a function by the caller and the function parameters
that receive the values of the arguments.

We use the code in Listing 2 to illustrate how it works. To trans-
late the buffer size involved in the buffer overflow, Senx starts
with the buffer size expression xy+1 in the scope of foo_malloc
and for x substitutes rows and for y substitutes cols+1 based on
the call arguments at line 9. Hence xy+1 becomes rows(cols+1)+1
in the scope of foo.

Effectiveness of Senx
We evaluate the effectiveness of Senx and the quality of its
generated patches using 42 real-world buffer overflow, bad cast,
and integer overflow vulnerabilities that are from 11 mature and
popular applications. For each vulnerability, we run the corre-
sponding application under Senx with a vulnerability-triggering
input. We manually examine the correctness of the generated
patch if Senx generates a patch. Otherwise, we examine what
caused Senx to abort patch generation. The list of the vulnerabili-
ties and our detailed evaluation are presented in [2].

For the 42 vulnerabilities, Senx generates 32 patches, all of which
are correct according to our criteria. Senx applies access range
analysis and loop cloning roughly equally for the 13 patched
buffer overf lows. Senx is unable to apply loop cloning mainly
because the loops involve calls to functions that have side effects
that Senx cannot remove. Senx must use expression translation
to generate 23.8% of the patches because the patches need to
be placed in a function different from where the vulnerability
occurs. The dominant cause for Senx to abort patch generation is
that Senx cannot converge all variables in the patch predicate to
a common function scope.

Comparison with other work. We compare the effectiveness
of Senx against SemFix [6] and Angelix [4]. Due to the consider-
able effort required to run SemFix and Angelix, we made the
comparison on only two vulnerabilities. Senx generates correct
patches for both vulnerabilities, while SemFix and Angelix are
unable to generate patches either because they cannot find an
existing program construct to change in order to pass both posi-
tive test inputs and negative test inputs or because they cannot
create a guard statement to prevent the vulnerabilities from
being triggered.

Conclusion
Automatic patch generation is a promising solution to rapidly
resolve software defects. However, the vast majority of these
tools are not well-suited to address software vulnerabilities
since they rely on test cases to generate correct patches, whereas
it is difficult to have complete test cases for any moderately large
target programs. To address software vulnerabilities, we built
Senx, a system that uses human-specified safety properties to
automatically generate patches. Senx uses three novel program
analysis techniques: access range analysis, loop cloning, and
expression translation. Evaluation shows that Senx generates
patches correctly for 76% of the 42 real-world vulnerabilities.

Acknowledgments
This research was supported in part by an NSERC Discovery
Grant (RGPIN 2018-05931) and a Canada Research Chair
(950-228402).

28 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Using Safety Properties to Generate Vulnerability Patches

References
[1] Z. Huang, M. D’Angelo, D. Miyani, and D. Lie, “Talos: Neu-
tralizing Vulnerabilities with Security Workarounds for Rapid
Response,” in Proceedings of the 2016 IEEE Symposium on
Security and Privacy, pp. 618–635.

[2] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using Safety Proper-
ties to Generate Vulnerability Patches,” in Proceedings of the
2019 IEEE Symposium on Security and Privacy, pp. 539–554.

[3] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “AutoPaG:
Towards Automated Software Patch Generation with Source
Code Root Cause Identification and Repair,” in Proceedings of
the 2nd ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS ’07), pp. 329–340.

[4] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis,” in
Proceedings of the 38th International Conference on Software
Engineering (ICSE ’16), pp. 691–701.

[5] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“Softbound: Highly Compatible and Complete Spatial Memory
Safety for C,” in Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI ’09), pp. 245–258.

[6] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program Repair via Semantic Analysis,” in Proceed-
ings of the 2013 International Conference on Software Engineer-
ing (ICSE ’13), pp. 772–781.

[7] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J.
Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard,
“Automatically Patching Errors in Deployed Software,” in
Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pp. 87–102.

[8] Z. Qi, F. Long, S. Achour, and M. Rinard, “An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate
Patch Generation Systems,” in Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis (ISSTA
2015), pp. 24–36.

XKCD xkcd.com

