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SECURITY

Using Safety Properties to Generate 
Vulnerability Patches
Z H E N  H U A N G ,  D A V I D  L I E ,  G A N G  T A N ,  A N D  T R E N T  J A E G E R

A utomatic Program Repair (APR) methods attempt to fix vulner-
abilities in programs comprehensively and without introducing new 
defects. Senx uses novel safety properties to generate patches, and 

it succeeds in generating patches for 32 of 42 real-world vulnerabilities. We 
explain how Senx works, compare it to other APR methods, and demonstrate 
why Senx is better at repairing source code.

Fixing security vulnerabilities in a timely manner is critical to protect users from attacks 
that exploit vulnerabilities. Unfortunately, a recent study shows that the average time to 
release software patches for vulnerabilities is 52 days, and the bottleneck lies in creating 
software patches [1]. 

Automatic Program Repair (APR) tools aim to automatically provide patches that fix vulner-
abilities. Most of them rely on a set of positive/negative example inputs to produce a patch 
that makes the vulnerable program behave correctly according to these example inputs [4, 6, 7]. 
The patched program must pass the positive example inputs but raise errors on the negative 
example inputs. But obtaining a complete set of example inputs is often difficult, and the 
patched program may behave incorrectly on other inputs, or the vulnerability may still be 
exploited by other inputs [8]. We refer to this traditional method as “example-based.”

We propose a different approach called “property-based” APR that relies on vulnerability-
specific, program-independent, human-specified safety properties. A safety property speci-
fies the condition on which a type of vulnerability cannot be triggered. For example, a safety 
property for buffer overflow vulnerabilities can be that a program should never have access 
beyond the bounds of a buffer. 

Our property-based approach has three major advantages: 1) a small set of safety properties 
can be defined once and applied on numerous programs without the need to specify anything 
pertaining to each of the programs; 2) the properties are precise and complete by nature so 
they work for all possible inputs; 3) it leverages a specific vulnerability’s context to generate a 
customized and efficient patch for the vulnerability, as opposed to the nonspecific and often 
inefficient patches generated by previous methods [5].

Property-based APR faces several outstanding challenges. First, it must identify the correct 
property to enforce for a given vulnerability because the properties are vulnerability-specific. 
Second, our goal is to generate source code patches that can be easily adopted by developers; 
as a result, the safety properties must be expressed using program entities such as variables. 
Third, the generated patches should affect program execution if and only if a safety property 
is violated. Finally, the generated patches should incur minimum performance overhead.

To address these challenges, we have designed Senx to automatically generate source code 
patches for security vulnerabilities using safety properties. We demonstrate the effectiveness 
of Senx using three important classes of vulnerabilities: buffer overflows, bad casts, and inte-
ger overflows. Our evaluation demonstrates that Senx is able to produce correct patches for 
over 76% of the vulnerabilities. And we believe that, in principle, Senx can generate patches 
for any class of vulnerabilities for which a safety property can be specified.
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Example-Based versus Property-Based
We now discuss the limitations of state-of-the-art APR tools. We use the program in Listing 1 
as the target program, which is adopted from a real-world buffer overflow vulnerability CVE-
2012-0947 in a popular media stream processing library. The program takes a string and its 
length as input, and outputs the reversed string. It outputs “” if an error occurs. Similar to the 
real vulnerability, two functions are used, one to allocate the output buffer, and the other to 
process the input string.

The buffer overflow happens when the size, specified from the command line, is smaller than the 
actual length of the input string. To fix the buffer overflow, a check can be added to ensure that the 
actual length of the string is smaller than the allocated size of the buffer into which it is copied. 
Note that the buffer size is only known to main; so the check should be added at line 19 to compare 
size against strlen(argv[2]). While a human developer can easily add this check, which indeed 
was in the official patch for the vulnerability, it presents challenges for state-of-the-art APR tools. 

 1 char* rev(const char *inp, char *out) {
 2    // reverse a string
 3    //  inp is the input string
 4    //  out is an output buffer
 5    if (inp != NULL) {
 6        int i, len = strlen(inp);
 7        // Failed to check if (len + 1 <= size_of_out)
 8        for (i = 0; i < len; i ++)
 9            out[i] = inp[len - i]; 
10        out[i] = '\0';
11        return out;
12    }  else
13        return "###";
14 }
15
16 void main(int argc, char *argv[]) {
17    int size = atoi(argv[1]) + 1;
18    char *out = (char *)malloc(size); 
19    // patch: if (strlen(argv[2]) + 1 > size) exit(1);
20    printf("%s\n", rev(argv[2], out));
21 }

Listing 1: A program that reverses an input string. It contains a buffer overflow in function rev.

Example-based approaches. Many APR tools rely on example inputs to fix vulnerabilities. 
For example, SemFix and Angelix use test inputs to find path constraints needed to gener-
ate fixes [4, 6]. Table 1 presents typical test inputs needed to use such tools to fix the buffer 
overflow for our example in Listing 1.

This approach has two drawbacks. First, the generated path constraints are often based on 
the concrete values used in the test inputs instead of the relationships between program vari-
ables. Given the test inputs in Table 1, SemFix and Angelix would wrongly infer that the value 
of argv[1] is not correlated with whether tests are positive or negative, based on the fact that it 
has the same values in both positive and negative test inputs.
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Type argv[1] argv[2] output expected output
P 1 A A A

P 2 AB BA BA

N 1 ABC CBA ###

N 2 ABC CBA ###

Table 1: Test inputs and outputs for the program in Listing 1. Type “P” test inputs are positive test inputs, 
while type “N” test inputs are negative test inputs.
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Second, the approach is highly sensitive to the completeness of 
test inputs. Because the length of the input string is smaller than 
3 for positive tests whereas the length is not smaller than 3 for 
negative tests, SemFix and Angelix would incorrectly derive that 
strlen(argv[2]) < 3 needs to be added to the program to fix the 
buffer overflow. The incorrect patch is generated due to the miss-
ing of a positive test input with strlen(argv[2]) > 2) in the test 
suite. This illustrates that example-based tools can easily fail 
when tests are missing in the test suite, which is notoriously hard 
to make complete.

Property-based approaches. AutoPaG creates patches using 
a predicate similar to a safety property [3]. But it handles only 
one vulnerability type, buffer overflows, so it cannot generate a 
correct patch if the vulnerability is of any other type. Moreover, 
it would fail to produce a patch if the safety property needs to 
be enforced in a location other than the function in which the 
vulnerability occurs. As in our example, the patch should be 
placed in the main function, but the buffer overflow occurs in 
the rev function. Lastly, the patch it generates can incur high 
performance overhead because it would add the patch to check 
the buffer size inside the for loop on line 8 due to the fact that the 
buffer overflow occurs within the loop.

Safety Properties
To generate a patch that fixes a vulnerability, Senx requires an 
input to trigger the vulnerability. The input can be a proof-of-
concept exploit or an input generated by a fuzzer. With this input, 
Senx generates a patch that will enforce the safety property 
violated by the vulnerability.

A Senx patch can have one of two forms: 1) a check-and-error 
patch that inserts a check to detect if a safety property no longer 
holds and raises an error to direct program execution away from 
the path where the vulnerability resides; 2) a repair patch that 
modifies existing code to prevent a safety property from being 
violated.

Each safety property corresponds to a particular vulnerability 
class and is an abstract Boolean expression that will be mapped 
to concrete variables in a program. We describe below the three 
types of safety properties that Senx currently supports.

Sequential buffer overflows. A sequential buffer overf low 
occurs when a sequence of memory accesses traversing a buffer 
crosses from a memory location inside the buffer to a memory 
location outside of the buffer. The Senx safety property for buffer 
overflows defines two abstract objects: a memory access and a 
buffer. The term buffer refers to any bounded memory region, 
which may include structs, objects, or arrays. The term memory 
access corresponds to an array access or pointer dereference 
occurring inside a loop. This safety property covers both the case 
when the memory access exceeds the upper range of the buffer 

and the case when the memory access falls below the lower range 
(sometimes called a buffer underflow). 

Bad casts. A harmful memory access can result from an offset 
from a base pointer beyond the upper bound of the buffer the base 
pointer is pointing to. This type of vulnerability may occur for 
several reasons, but it commonly occurs when a pointer is cast to 
a type that is incompatible with the object the pointer points to. 
The safety property for bad casts can prevent both bad casts for 
simple structs and objects, as well as nested structs and objects.

Integer overflows. An integer overflow takes place when a vari-
able is assigned a value larger or smaller than what can be repre-
sented by the type of the variable. An integer overflow can lead 
to a vulnerability when the result of the overflow is then used in 
operations such as allocating a buffer, producing a buffer that is 
far smaller than expected. Consequently, the safety property for 
integer overflows checks that value used in certain operations is 
not the result of an integer overflow.

For our prototype, we have started with these three vulnerability 
classes. Nonetheless, they represent a good percentage of CVE 
vulnerabilities. Based on our informal analysis of the vulner-
abilities published in CVE Details in 2018, the most popular 
vulnerability categories are denial of service, code execution, 
and overflow. By examining 100 randomly chosen CVE reports 
for each of the three vulnerability categories, we find that 
25% of CVE vulnerabilities are buffer overflows, bad casts, or 
integer overflows. We believe the principles behind Senx can be 
extended to other vulnerability classes, and we plan to do so as 
our future work.

Senx
Senx aims to generate source code patches that can be easily 
verified and adopted by developers. As shown in Figure 1, Senx 
generates patches in four major steps: vulnerability identifica-
tion, predicate generation, patch placement, and patch synthesis.

Vulnerability Identification
In vulnerability identification, Senx runs a program with an 
input that can trigger a vulnerability and outputs the violated 

Figure 1: Workflow of Senx: each rounded rectangle represents a step in 
Senx’s patch generation; each rectangle with vertical bars represents a 
component of Senx.
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safety property, the vulnerability point (the program location 
where the safety property is violated), and the source code 
expressions for the execution trace. Senx runs the program using 
concolic execution to generate the execution trace corresponding 
to the vulnerability-triggering input. Senx records the execution 
trace as source code expressions, which conform to the syntax 
of the programming language of the target program, for synthe-
sizing a source code patch. To support complex data types such 
as nested C/C++ structs, references to structs, and arrays with 
pointers, Senx records the relationships between data objects and 
the way data objects are referenced. This way Senx can recover 
the full expression for a data object such as foo→f.bar[10].

Predicate Generation
During predicate generation, Senx takes the violated safety 
property, which also implies the type of the vulnerability, and the 
source code expressions generated by vulnerability identifica-
tion, and outputs a predicate required to prevent the violation 
of the safety property. Senx maps the violated safety property 
to concrete expressions over variables, constants, and function 
calls in the form of the source code of the program.

For buffer overflows, Senx aims to insert the patch before the 
loop where a set of sequential memory accesses occurred; so it 
needs to extract expressions that represent the memory access 
range for the memory accesses. Senx uses two complementary 
loop analysis techniques: access range analysis and loop clon-
ing. Both of them take a function F in the target program and 
an instruction inst that performs the faulty access in the buffer 
overflow, and output the symbolic memory access range of inst.

Access range analysis. Senx computes the access range of 
canonicalized loops. It relies on LLVM’s built-in loop canonical-
ization functionality to convert the loop into a standard form. It 
starts with the innermost loop and iterates to the outermost loop, 
and accumulates increments and decrements on the loop induc-
tion variables.

For each loop, Senx retrieves the loop iterator variable and its 
bounds and the list of induction variables of the loop and their 
update, the fixed amount that an induction variable is increased 
or decreased by on each loop iteration. We use the loop in bar of 
Listing 2 to illustrate how access range analysis can be applied  
to nested loops.

 1 char *foo_malloc(x,y) {
 2   return (char *)malloc(x * y + 1);
 3 }
 4
 5 int foo(char *input) {
 6+  if ((double)(cols+1)*(size/cols)+1 > 
 7+        rows * (cols+1) + 1)
 8+     return -1; 
 9   char *output=foo_malloc(rows,cols+1);
10   if (!output)

11      return -1;
12   bar(p, size, cols, output);
13   return 0;
14 }
15
16 void bar(char *src,int size,int cols,char *dest) {
17   char *p=dest;char *q=src;
18   while (q < src+size)  {
19      for (unsigned j=0;j<cols;j++)
20         *(p++) = *(q++);
21      *(p++) = ‘\n’;
22   }
23   *p = ‘\0’;
24 }

Listing 2: A buffer overflow in CVE-2012-0947 with a patch, lines prefixed 
with “+”

In this example, Senx identifies j as the loop iterator variable, 
whose bounds are 0 and cols; it also identifies j, p, and q as induc-
tion variables, each of which has an update of 1 for the innermost 
for loop. Senx then symbolically accumulates the update to each 
induction variable based on the number of loop iterations, which 
is cols. Similarly, Senx finds q as the loop iterator variable, with 
src as its lower bound and src+size as its upper bound, and q and 
p as induction variables, whose accumulated update is size and 
(cols+1)(size/cols)+1, respectively, for the while loop enclosing 
the inner for loop.

Following the analysis of all the loops enclosing inst, Senx per-
forms reaching definition dataflow analysis to find the definition 
that reaches the beginning of the outermost loop for the pointer 
ptr used by inst. In this example, we have ptr=p whose initial 
value is dest before the while loop. By adding the initial value 
dest to the accumulated update of p, we will have dest+(cols+1)
(size/cols)+1. Therefore Senx decides the access range as 
[dest,dest+(cols+1)(size/cols)+1].

Loop cloning. Senx cannot apply access range analysis to loops 
that LLVM cannot canonicalize. Instead it uses loop cloning 
for these loops. At a high level, loop cloning creates new code to 
compute the number of loop iterations. Senx produces the new 
code from a clone of the code of the loop in the target program, but 
removes the code that causes side effects. The new code is used 
by the generated patch to return the access range. Details on loop 
cloning can be found in [2].

Function calls. For certain cases, Senx can extract expressions 
containing function calls. Senx needs to ensure that the gener-
ated predicate does not call functions that have side effects. 
We define three types of side effect: 1) a change to the memory 
accessible outside of a function; 2) an invocation of a system call 
that has external impact; 3) an invocation of a function that has 
any side effect. 

Senx uses a flow-sensitive, context-insensitive intraprocedural 
static analysis to identify the list of functions that do not have 
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any side effect. Senx initializes the list with functions on a 
whitelist and then adds each function that has no side effect to 
the list by analyzing every function of a target program.

Patch Placement
In patch placement, Senx uses the vulnerability point found in 
vulnerability identification and the predicate generated in predi-
cate generation to find a program location to insert the patch. 
The patch location must be a point where all necessary variables 
in the predicate are in the scope. If variables in the predicate 
are from different scopes, Senx uses expression translation to 
translate the predicate into a new one formed from variables in a 
common scope. For check-and-error patches, Senx also requires 
the scope to have some error handling code to call. It uses Talos 
[1] to find a suitable error handling code.

Expression translation. Senx must produce a patch predicate 
that can be evaluated in a single function scope, because Senx 
generates source code patches. In some cases, a target program 
computes the buffer allocation size in one function scope but the 
memory access range in a different function scope. As a result, 
the expression representing the allocation size and the expres-
sion representing the memory access range are not valid in a 
single function scope. 

To solve this problem, expression translation translates an 
expression from the scope of a source function to an equivalent 
expression in the scope of a destination function, without the 
need to add new function parameters and call arguments. This 
process is called converging the predicate. Expression transla-
tion exploits the equivalence between the arguments that are 
passed to a function by the caller and the function parameters 
that receive the values of the arguments. 

We use the code in Listing 2 to illustrate how it works. To trans-
late the buffer size involved in the buffer overflow, Senx starts 
with the buffer size expression xy+1 in the scope of foo_malloc 
and for x substitutes rows and for y substitutes cols+1 based on 
the call arguments at line 9. Hence xy+1 becomes rows(cols+1)+1 
in the scope of foo.

Effectiveness of Senx
We evaluate the effectiveness of Senx and the quality of its 
generated patches using 42 real-world buffer overflow, bad cast, 
and integer overflow vulnerabilities that are from 11 mature and 
popular applications. For each vulnerability, we run the corre-
sponding application under Senx with a vulnerability-triggering 
input. We manually examine the correctness of the generated 
patch if Senx generates a patch. Otherwise, we examine what 
caused Senx to abort patch generation. The list of the vulnerabili-
ties and our detailed evaluation are presented in [2].

For the 42 vulnerabilities, Senx generates 32 patches, all of which 
are correct according to our criteria. Senx applies access range 
analysis and loop cloning roughly equally for the 13 patched 
buffer overf lows. Senx is unable to apply loop cloning mainly 
because the loops involve calls to functions that have side effects 
that Senx cannot remove. Senx must use expression translation 
to generate 23.8% of the patches because the patches need to 
be placed in a function different from where the vulnerability 
occurs. The dominant cause for Senx to abort patch generation is 
that Senx cannot converge all variables in the patch predicate to 
a common function scope.

Comparison with other work. We compare the effectiveness 
of Senx against SemFix [6] and Angelix [4]. Due to the consider-
able effort required to run SemFix and Angelix, we made the 
comparison on only two vulnerabilities. Senx generates correct 
patches for both vulnerabilities, while SemFix and Angelix are 
unable to generate patches either because they cannot find an 
existing program construct to change in order to pass both posi-
tive test inputs and negative test inputs or because they cannot 
create a guard statement to prevent the vulnerabilities from 
being triggered.

Conclusion
Automatic patch generation is a promising solution to rapidly 
resolve software defects. However, the vast majority of these 
tools are not well-suited to address software vulnerabilities 
since they rely on test cases to generate correct patches, whereas 
it is difficult to have complete test cases for any moderately large 
target programs. To address software vulnerabilities, we built 
Senx, a system that uses human-specified safety properties to 
automatically generate patches. Senx uses three novel program 
analysis techniques: access range analysis, loop cloning, and 
expression translation. Evaluation shows that Senx generates 
patches correctly for 76% of the 42 real-world vulnerabilities.
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