
Fine-grained Program Partitioning for Security
Zhen Huang

zhen.huang@depaul.edu

DePaul University

Chicago, Illinois, USA

Trent Jaeger

tjaeger@psu.edu

Pennsylvania State University

State College, Pennsylvania, USA

Gang Tan

gtan@psu.edu

Pennsylvania State University

State College, Pennsylvania, USA

ABSTRACT
Complex software systems are often not designed with the prin-

ciple of least privilege, which requires each component be given

the minimum amount of privileges to function. As a result, soft-

ware vulnerabilities in less privileged code can lead to privilege

escalation, defeating security and privacy. Privilege separation is

the process of automatically partitioning a software system into

least privileged components, and we argue that it is effective at

reducing the attack surface. However, previous privilege-separation

systems do not provide fine-grained separation of privileged code

and non-privileged code co-existing in the same function for C/C++

applications. We propose a fine-grained partitioning technique for

supporting fine-grained separation in automatic program partition-

ing. The technique has been applied to a set of security-sensitive

networking and interactive programs. Results show that it can auto-

matically generate executable partitions for C applications; further,

partitioned programs incur acceptable runtime overheads.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
software security, program partitioning, principle of least privilege,

program analysis

ACM Reference Format:
Zhen Huang, Trent Jaeger, and Gang Tan. 2021. Fine-grained Program

Partitioning for Security. In 14th European Workshop on System Security
(EuroSec’ 21). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

3447852.3458717

1 INTRODUCTION
Software vulnerabilities remain a critical issue of computer security,

despite decades of research on identifying, preventing, and fixing

them. Although vulnerabilities often exist in non-privileged code,

exploiting such vulnerabilities can allow adversaries to gain access

to privileged code that co-exists with non-privileged code in the

same program. For example, such vulnerabilities were discovered

recently in both Linux and Windows applications [1, 3].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EuroSec ’21, April 26, 2021, Edinburgh, Scotland, UK
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8337-0/21/04.

https://doi.org/10.1145/3447852.3458717

An effective approach to preventing such exploits from accessing

privileged code is to separate non-privileged code from privileged

code in a program. Privileged code should be made to reside in

its own partition and be isolated from a partition that hosts non-

privileged code so that the compromise of the non-privileged par-

tition does not directly lead to the compromise of the privileged

partition. The two partitions communicate via a carefully designed,

controlled interface. This design follows the principle of least privi-

lege and significantly raises the bar for adversaries to gain privilege

escalation by exploiting vulnerabilities in non-privileged code.

To aid developers to partition a program, several automatic

program-partitioning tools [6, 7, 14, 18] have been proposed to

privilege separate C/C++ applications, from a small number of user

annotations about how to identify privileged operations. For in-

stance, Privtrans [7] requires users to annotate sensitive data and

any operations that access sensitive data are treated as privileged

operations. These systems demonstrate that automatic program

partitioning can be practical.

However, existing tools suffer from a major drawback that pre-

vent them from being widely adopted. Most tools partition a pro-

gram at the granularity of functions. They partition the program’s

code into two sets of functions, but do not split individual functions.

This is mainly because programs are already structured using func-

tions as the basic unit; when a function calls another function in a

different partition, the call naturally becomes a Remote Procedure

Call (RPC) after partitions are isolated. However, there are cases

when a split should occur within functions. For example, a function

can call both process management functions, which may have to

be executed in a non-sensitive partition, and privileged functions,

which must be executed in a sensitive partition. Therefore, an ideal

partitioning tool should support fine-grained partitioning, which

can split such individual functions.

In this paper, we describe a technique thatmakes progress toward

addressing the aforementioned weakness. This technique has been

implemented in a prototype system. Our major contributions are

as follows:

• The technique supports fine-grained partitioning that par-

titions individual functions of programs; it addresses the

challenge to separate privileged code and non-privileged

code co-existing in the same function.

• We implemented the techniques in a prototype. Our evalua-

tion on the prototype shows that our fine-grained partition-

ing is effective and efficient. The prototype is open-sourced

at https://github.com/huang-zhen/ProgramPartitioning.

2 FINE-GRAINED PARTITIONING

https://doi.org/10.1145/3447852.3458717
https://doi.org/10.1145/3447852.3458717
https://doi.org/10.1145/3447852.3458717
https://github.com/huang-zhen/ProgramPartitioning


1 void load_identity_file(Identity *id) {

2 char *prompt = "Enter passphrase for key: ";

3 char *passphrase = read_passphrase(prompt, 0);

4 int ret = sshkey_load_private_type(id−>

filename, passphrase);

5 if (ret != 0)

6 error("Load key failed");

7 return ret;

8 }

Figure 1: A function adapted from openssh. It illus-
trates the co-existence of calls to both a privileged
function sshkey_load_private_type and an NPS function
read_passphrase within the function.

1 void update_gecos(char *user, char *gecos){

2 const struct passwd *pw;

3 struct passwd newpw;

4

5 if (pw_open(O_RDWR, cl) == 0) {

6 fprintf(stderr,"cannot open file\n");

7 fail_exit(E_NOPERM);

8 }

9 pw = pw_locate(user);

10 if (NULL == pw) {

11 fprintf(stderr,"user does not exist\n"),

12 fail_exit(E_NOPERM);

13 }

14 newpw = *pw;

15 newpw.pw_gecos = gecos;

16 if (pw_update(&newpw) == 0) {

17 fprintf(stderr,"failed to prepare the new

entry'\n");

18 fail_exit(E_NOPERM);

19 }

20 if (pw_close() == 0) {

21 fprintf(stderr,"failure while writing

changes\n");

22 SYSLOG("failure while writing changes");

23 fail_exit(E_NOPERM);

24 }

25 }

Figure 2: A function adapted from chfn in the Linux shadow-
utils package. It illustrates the co-existence of calls to priv-
ileged functions such as pw_open and pw_update, and NPS
functions such as fprintf and fail_exit.

Function-level program partitioning is sufficient for many usage

scenarios as demonstrated by prior work [7, 8, 12–16, 18–20]. How-

ever, it does not support the scenarios when a function contains

both calls to privileged functions that must stay in the sensitive

partition and calls to non-privileged functions that must stay out-

side.

We refer to program partitioning at a granularity finer than

functions as fine-grained program partitioning. As an initial step, we

present a special form of fine-grained partitioning to address two

common patterns we identified in a set of networking programs

and interactive programs.

In the first pattern, a user-interactive function is called to gather

information from the user and the information is then used to

call a privileged function. The first pattern is illustrated in Fig-

ure 1, in which load_identity_file calls read_passphrase, a
user-interactive function, and sshkey_load_private_type, a priv-
ileged function. We call this pattern non-privileged-to-privileged
pattern.

In the second pattern, a privileged function is called first and

the result of the call determines whether to execute of one or more

non-privileged functions. As illustrated in Figure 2, update_gecos
calls several privileged functions such as pw_open and pw_locate,
and non-privileged functions such as fprintf and fail_exit. We

call this pattern privileged-to-non-privileged pattern.

In both patterns, a function contains both calls to privileged

functions and calls to non-privileged functions. We call the lat-

ter non-privileged-partition specific (NPS) functions. A function

is an NPS function for reasons as follows: (1) sandboxing restric-

tions dictate that certain library functions must be executed outside

privileged domains; e.g., an SGX sandbox cannot directly issue OS

syscalls and has to transition outside of the sandbox to call many C

library functions that request OS services; (2) file I/O functions such

as the fprintf family of functions should stay in a non-privileged

partition; (3) process management functions such as the one for

process termination should stay in a non-privileged partition. One

key reason why functions of categories (2) and (3) should stay in

a non-privileged partition is because of our design of using OS

processes as the isolation mechanism. A program is split in a way

so that the main functionality including I/O stay in a non-privileged

process, which issues calls to a privileged process hosting privi-

leged functions. In this design, the non-privileged process performs

I/O and process management (e.g., starting and terminating the

privileged process).

To illustrate the challenge to separate privileged code and non-

privileged code co-existing in the same function, Figure 1 shows the

load_identity_file function that loads a private key file. It calls

an NPS function read_passphrase to prompt the user to enter the

passphrase for the private key file and then calls a privileged func-

tion sshkey_load_private_type to read the private key file into

memory and check whether the passphrase is correct or not. Fig-

ure 2 shows the update_gecos function that updates sensitive in-

formation in the password file. It calls privileged function pw_lock
to lock the password file and privileged function pw_update to

update the information stored in the password file. If any failure

occurs during the call to a privileged function, update_gecos calls

functions fprintf and fail_exit to output an error message and

terminate the program execution.We treat fprintf and fail_exit
as NPS functions for reasons we discussed earlier.

To understand the coding conventions of this kind of functions,

we studied the source code of networking programs including

openssh and wget, and interactive programs from the Linux shadow-

utils package. We find that there are two typical coding conventions

2



involving intertwined calls to privileged functions and NPS func-

tions. First, a function can call I/O functions to let the user enter

some information and then call privileged functions using the en-

tered information. Second, a function can call privileged functions

and then call I/O functions to display error messages and call pro-

cess management functions to terminate program execution, based

on the return values of the calls to the privileged functions.

There may exist other coding conventions that involve inter-

twined calls to privileged functions and NPS functions. For example,

calls to NPS functions may not be control dependent on calls to

privileged functions. For this work, we focus on the coding conven-

tion representing the non-privileged-to-privileged pattern and the

privileged-to-non-privileged pattern. We call a function using the

coding convention a hotspot function.
A naive solution is to put a hot spot function in the non-sensitive

partition and change each of its privileged call to a remote call to the

sensitive partition. For example, all calls to privileged functions such

as pw_lockwill be replacedwith inter-partition calls. But this would
result in multiple inter-partition calls and thus incur the runtime

overhead of multiple rounds of cross-partition communication. In

Section 5.2, we will show that the runtime overhead of partitioning

is approximately proportional to the number of inter-partition calls.

To reduce the performance overhead, our solution splits a hotspot

function into two functions: one primary function that contains

the calls to privileged functions but not NPS functions and one

secondary function that contains the calls to NPS functions. The pri-

mary function is executed in the privileged partition, while the sec-

ondary function is executed in the non-privileged partition. Unlike

the naive solution, this solution requires only one inter-partition

call from the secondary function to the primary function.

The primary function is a clone of the original function with

the code change that replaces a group of consecutive calls to NPS

functions with a return statement. For example, line 6 and line 7 in

Figure 2 are executed when the call to privileged function pw_open
fails; so they are replaced with a return statement that returns

an error return value -1. Similarly, since line 17 and line 18 are

executed when the call to pw_update fails, they are replaced with

a return statement that returns an error return value -2.

The secondary function consists of a call to the primary function

and a switch statement that checks the return value from the

primary function and invokes calls to NPS functions corresponding

to the return value. Figure 3 shows the secondary function created

for the function shown in Figure 2. As we can see, the secondary

function first calls the primary function. If the call returns -1, it

indicates a failure in the call to pw_lock in the primary function;

so the secondary function performs the work of lines 6 and 7 in

Figure 2. Other cases are similar. As a result, the primary function

and the secondary function work together to retain the original

functionality of update_gecos.
The creation of the primary function and the secondary function

is composed of four steps: 1) identifying hot spot functions that

need to be split; 2) creating the primary function for each identified

function; 3) creating the secondary function for each identified

function; 4) substituting the calls to identified functions to the calls

to their corresponding secondary functions.

1 void update_gecos_sec(char *user, char *gecos){

2 int *ret = update_gecos_pri(user,gecos);

3 switch (*ret) {

4 case −1: /* pw_open */

5 fprintf(stderr,"cannot open file\n");

6 fail_exit(E_NOPERM);

7 break;
8 case −2: /* pw_locate */

9 fprintf(stderr, "user does not exist\n");

10 break;
11 ...

12 ...

13 }

14 }

Figure 3: The secondary function created from function
update_gecos. Function update_gecos_pri is the primary
function created from function update_gecos.

Algorithm 1 Identifying hot spots in a function

Input: 𝐺 is the set of all function calls in a function 𝐹 ; 𝑃𝐿 is the

list of privileged functions; 𝑁𝑃𝐿 is the list of NPS functions

Output: 𝐻 is the set of hot spots in 𝐹

𝐻 ← ∅
for function call 𝐹𝐶 ∈ 𝐺 do

if (Callee(𝐹𝐶) ∈ 𝑃𝐿) then
for statement 𝐶 ∈ CheckCallRet(𝐹𝐶) do

for branch 𝐵 ∈ GetBranches(𝐶) do
for statement 𝑆 ∈ 𝐵 do

if (IsCall(𝑆) ∧ Callee(𝑆) ∈ 𝑁𝑃𝐿) then
𝐻 ← 𝐻 ∪ 𝐹𝐶

2.1 Identifying Hot Spot Functions
For the privileged-to-non-privileged pattern, we define a hot spot
as a call to privileged function on which a sequence of one or more

calls to an NPS function are control-dependent. The sequence must

end with either an NPS call that would terminate the program

execution or a return statement. We use Algorithm 1 to identify

the privileged-to-non-privileged pattern.

In the algorithm, function Callee returns the callee of a state-
ment if the statement is a function call. Function CheckCallRet
returns a set of conditional statements that checks the return value

of a function call. Function GetBranches returns a set of branches

for a conditional statement. And function IsCall returns true if a

statement is a function call or false otherwise.

2.2 Creating Primary Functions
We create the primary function for each hot spot function in four

steps. First, we clone the code of the hot spot function as the initial

code of the primary function. Second, we modify the prototype of

the function and the original return statements in the function if

needed. If the return type of the function is not void, we add an

additional pointer parameter as the original return value and replace

3



Algorithm 2 Creating a primary function

Input: 𝐹 is the set of all statements in a hot spot function of a

program; 𝐻 is the set of hot spot statements in 𝐹 ; 𝐵 is the set of

all statements in a branch of an if or switch statement

Output: 𝐺 is the set of all statements in the primary function

corresponding to 𝐹 ; 𝑀 is the set of matching pairs of hot spot

return values and NPS call statements

𝐺 ← 𝐹

𝑀 ← ∅
𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒 ← 0

for statement 𝑆 ∈ 𝐺 do
if (𝑆 ∈ 𝐻 ) then

for branch 𝐵 ∈ GetBranches(𝑆) do
𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒 ← 𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒 − 1
for NPS call 𝐶 ∈ 𝐵 do

𝐺 ← 𝐺 −𝐶
𝑀 ←𝑀 ∪ (𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒,𝐶)

𝑅← CreateReturnStatement(𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒)

𝐺 ← 𝐺 ∪ 𝑅

the original return statements as assignments to the additional

pointer parameter. Then we change the return type of the function

to int. Third, we label each branch of all hot spots within the code

with a unique return value, i.e. a hot spot return value. Last, we

remove NPS function calls on a branch of a hot spot and add a

return statement at the end of the branch that returns the hot spot

return value corresponding to the branch. To aid the creation of the

secondary function, this step also produces a mapping from a hot

spot return value to the corresponding sequence of NPS function

calls.

Algorithm 2 shows how we create the primary function for a hot

spot function. Function GetBranches returns a set of branches of
an if or a switch statement. Function CreateReturnStatement
creates a return statement that returns a specified value.

2.3 Creating Secondary Functions
In the secondary function, we create a call to the primary function,

followed by a switch statement. Based on the mapping between

each hot spot return value of the primary function and its corre-

sponding NPS function calls, which is produced in the creation of

the primary function, each case of the switch statement calls NPS

functions based on the hot spot return value returned from the call

to the primary function. If the original hot spot function has return

values, we add return statements to return the value passed via the

additional return value parameter of the primary function.

3 COMMUNICATION BETWEEN PARTITIONS
To work together as a single program, partitions need to communi-

cate with one another. In our design, each partition of a partitioned

program is packaged as a standalone program and loaded into a

separate process. Each partition uses Remote Procedure Call (RPC)

to communicate with another partition. Hence, privileged code that

needs to be invoked from the insensitive partition is exposed to the

insensitive partition as one or more RPC functions.

As discussed in Section 2, a primary function and a secondary

function are produced for each hot spot function. The primary func-

tion is implemented as an RPC function running in the sensitive

partition and the original hot spot function is replaced by the sec-

ondary function that invokes the corresponding primary function

to perform privileged operations.

4 IMPLEMENTATION
We have implemented our technique in a prototype on Linux. It

works on C/C++ programs and uses Talos [10] to get various infor-

mation on the source code of the programs that are needed by our

algorithms.

For each target program, it creates the source code of an RPC

server program that represents the sensitive partition and modifies

the target program to invoke functions in the RPC server program

to perform privileged operations.

To allow the RPC server program to perform privileged opera-

tions, the prototype sets the setuid bit on the RPC server program.

5 EVALUATION
We evaluate the effectiveness and the performance overhead of

our fine-grained program partitioning. Our evaluation is conducted

on a set of networking programs and interactive programs on a

workstation running 64-bit Ubuntu 16.04 with an Intel Core i7-7700

3.6GHz CPU and 16GB of RAM.

5.1 Effectiveness
Networking programs. ssh is an utility included in OpenSSH [4],

which implements the client-side of the SSH protocol. We consider

the RSA private key loaded by ssh as the sensitive data. To measure

performance overhead, we used the partitioned ssh to log into an

SSH server running on the same workstation.

wget is a program for downloading files from an HTTP or FTP

server [2]. We treat the downloaded file as the sensitive data be-

cause malicious content may be embedded in the file. To measure

performance overhead, we used the partitioned wget to download

a 1KB file from an FTP server running on the same workstation.

Interactive programs. We also experimented on a set of inter-

active programs from the Linux shadow-utils package [5]. There

are over 30 programs in this package. Many of them do not access

security-sensitive information; for example, program "groups" just

prints a user’s group information. Some of the programs are difficult

to set up to run and experiment with; for example, "login" starts a

login session. So we excluded those programs. The programs we

included are presented in Table 1.

For interactive programs, we discuss only how chsh is privi-

lege separated; other programs are similar. chsh is a setuid pro-

gram that enables a user to change his/her login shell. Any regular

Linux user can invoke it and, because of setuid, it runs with root

privileges. It works by updating the user’s corresponding shell en-

try in /etc/passwd with the new shell supplied by the user. To

privilege separate chsh, we annotated variables pw and pwent as

sensitive; they hold the old and new entry in the password file,

respectively. Function update_shell() is then identified as the

only privileged function. Then chsh is separated into an executable

with update_shell(), called pchsh, and an executable with the

4



Table 1: Partitioning results of benchmark programs.

Benchmark SLOC Sensitive Data # of functions/

privileged funcs

openssh 99,507 private key file 975/4

wget 86,294 downloaded file 730/3

chfn 928 password 12/3

chsh 763 password 10/1

chage 1,314 password 15/3

passwd 1,581 password, shadow 14/5

gpasswd 1,524 group 21/3

useradd 3,092 password, group, shadow 25/5

userdel 2,048 password, group, shadow 12/4

pwconv 667 password, group, shadow 5/1

rest of the code, still called chsh. After separation, pchsh has the
setuid bit on, while the new chsh does not. This way, only a small

amount of code (i.e., those in pchsh) is run with higher privileges,

reducing the attack surface of chsh.

5.2 Performance
Overhead of RPC calls. To understand the effect of fine-grained

partitioning, we measured the runtime overhead of RPC calls and

result is shown in Figure 4. The RPC calls are made between a client

program and a server program running on the same computer so

there is no networking overhead. A function in the client program

makes a specific number of RPC calls to a remote function on the

server. We vary the number of RPC calls made within the function

andmeasure the execution time of the function for different number

of RPC calls.

Because the execution time of an RPC call depends on not only

the communication overhead but also the execution time of code of

the remote function, we choose to use three types of basic functions

for measurements. They include a null function that does not take

any parameter and returns to its caller without any return value,

an integer function that takes a single 32-bit integer parameter and

returns twice the value of the parameter back to its caller, and a

string function that takes a character string parameter and returns

a constant 20-character string back to its caller.

The figure shows the relation between the number of RPC calls

and the execution time for the three types of functions. For all

functions, there is roughly a linear relation between the number of

RPC calls and the execution time: the more RPC calls is invoked,

the higher is the execution time. The null function and the inte-

ger function have approximately the same amount of execution

time, while the string function has an execution time significantly

longer than them. The result shows that we can reduce the runtime

overhead by reducing the number of RPC calls.

Fine-grained partitioning. We compare our fine-grained parti-

tioning with a naive partitioning described in Section 2. Instead of

creating a primary function that embodies all the calls to privileged

functions invoked from a single function, the naive partitioning

turns each such call into a separate RPC call.

Table 2 shows the results of the comparison. Column “# Reduced

RPC calls” presents the difference between the number of RPC calls

occurred in the naive partitioning and the number of RPC calls

	0

	50000

	100000

	150000

	200000

	250000

	300000

	350000

	400000

	0 	5 	10 	15 	20

Ex
ec
ut
io
n	
Ti
m
e	
(n
s)

Number	of	RPC	Calls

RPC	Call	Overhead

Null	Function
Integer	Function
String	Function

Figure 4: Overhead of RPC Calls

Table 2: Results of fine-grained partitioning.

Benchmark # Hot spot # Reduced RPC Speedup

functions calls

openssh 1 2 1.32x

wget 1 2 1.06x

chfn 1 6 1.10x

chsh 1 5 1.19x

chage 3 6 1.07x

passwd 2 9 1.03x

gpasswd 3 3 1.03x

useradd 5 12 1.01x

userdel 4 12 1.07x

pwconv 1 192 3.90x

AVERAGE 2.5 30.6 1.38x

occurred in our fine-grained partitioning. Column “ Speedup” gives

the result of dividing the program’s execution time for the naive

partitioning by the execution time for the fine-grained partitioning.

As we can see, both networking programs and interactive pro-

grams can benefit from fine-grained partitioning. These programs

have between one to five hotspot functions. By applying fine-

grained partitioning to these hotspot functions, as high as 192 RPC

calls are eliminated. As a result, the runtime performance of these

programs is improved by an average of 38%. In general, the more

the number of reduced RPC calls is, the higher the performance

improvement we can get from fine-grained partitioning.

The execution time of these programs under typical inputs and

the performance overhead of the partitioned programs compared

to their unpartitioned versions are shown in Table 3. On average,

there is a 5.2% of performance overhead. The shadow-util programs

are short-running programs; even after partitioning, the amount of

total running time is quite acceptable.

6 RELATEDWORK
Many program partitioning tools have been proposed [6–9, 11–20].

Based on the extent of support they provide to programmers, they

5



Table 3: Runtime overhead imposed by partitioning.

Benchmark Task Runtime Overhead

(ms) (%)

openssh login into an SSH server 3.0 8.9%

wget download a file from 54.5 7.4%

an FTP server

chfn change real user info 66.7 -5.8%

chsh change user shell 63.9 -1%

chage change password 58.5 2.4%

expiry info

passwd change user password 67.9 10%

gpasswd chage group password 58.7 4.4%

useradd add users 177.4 3.5%

userdel delete users 176.9 1.4%

pwconv create shadow from 0.4 76%

password

GEOMEAN 34.0 5.2%

can be roughly categorized into tools that aid program partitioning

and tools that automatically partition programs.

Some tools aid programmers in partitioning programs manually.

Wedge dynamically collects statistics about how memory regions

are used in a program [6] to help programmers identify partitioning

boundaries. Privman provides a set of library functions that can be

used by programmers to ease the task of partitioning programs [11].

Automatic program partitioning splits a program into two or

more partitions with minimum programmer interference. Several

tools work on C/C++ programs. Using static analysis, Privtrans and

PtrSplit partition a C program into a non-privileged partition and

a privileged partition, which communicate via RPC [7, 13]. Unlike

Privtrans and PtrSplit, ProgramCutter employs dynamic profiling

information to partition programs [18]. It aims to achieve a balance

between performance and security in program partitioning by using

graph partitioning on a dynamic dependency graph built from

the profiling information. Combining static analysis and dynamic

analysis, SeCage decomposes a program into multiple partitions,

each of which can have its own sensitive data [14].

For Java programs, Jif/split performs automatic partitioning

based on security annotations and a user-specified trust relation-

ship between partitions [19, 20]. Swift extends the approach used

by Jif/split to web applications that involve more complex data

structures and control flows [8].

There are also program partitioning tools that take advantage of

the hardware supported Trusted Execution Environments [12, 16].

7 LIMITATIONS
Our fine-grained program partitioning focuses on two coding pat-

terns involved in individual functions that have intertwined privi-

leged code and non-privileged code: privileged-to-non-privileged

and non-privileged-to-privileged. There exist other patterns. We

plan to address those patterns in our future work.

The prototype is not completely automated. For a target program,

the prototype can automatically produce the RPC server program,

representing the sensitive partition, and makes the necessary modi-

fications directly on the target program so that the modified target

program represents the insensitive partition. But it relies on de-

velopers to create the RPC specification file needed by both the

RPC server program and the modified target program. To aid the

developers, it provides the developers the list of RPC functions and

the parameters for each of the RPC functions.

8 CONCLUSION
Automatically privilege separating an application has been effec-

tive in improving software systems’ security, especially when those

systems are written in memory-unsafe languages. In this paper, we

describe fine-grained program partitioning that supports separa-

tion of intertwined privileged code and non-privileged code within

functions. Our evaluation indicates that fine-grained program par-

titioning is effective and improves performance in partitioned pro-

grams.

REFERENCES
[1] GNU Beep 1.3 - ’HoleyBeep’ Local Privilege Escalation. https://www.exploit-

db.com/exploits/44452/.

[2] GNU Wget. https://www.gnu.org/software/wget/.

[3] Microsoft Office CVE-2018-8412 Privilege Escalation Vulnerability. https://www.

symantec.com/security-center/vulnerabilities/writeup/105014.

[4] OpenSSH. https://www.openssh.com/.

[5] Shadow Utils. https://www.centos.org/docs/5/html/5.5/technical-notes/shadow-

utils.html.

[6] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge: splitting appli-

cations into reduced-privilege compartments. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation (2008), pp. 309–322.

[7] Brumley, D., and Song, D. Privtrans: Automatically partitioning programs for

privilege separation. In 13th Usenix Security Symposium (2004), pp. 57–72.

[8] Chong, S., Liu, J., Myers, A., Qi, X., Vikram, K., Zheng, L., and Zheng, X.

Secure web applications via automatic partitioning. In ACM SIGOPS Symposium
on Operating Systems Principles (SOSP) (Oct. 2007), pp. 31–44.

[9] Clements, A. A., Almakhdhub, N. S., Bagchi, S., and Payer, M. ACES: Auto-

matic compartments for embedded systems. In 27th USENIX Security Symposium
(USENIX Security 18) (Baltimore, MD, Aug. 2018), USENIX Association, pp. 65–82.

[10] Huang, Z., D’Angelo, M., Miyani, D., and Lie, D. Talos: Neutralizing vulnera-

bilities with security workarounds for rapid response. In 2016 IEEE Symposium
on Security and Privacy (SP) (May 2016), pp. 618–635.

[11] Kilpatrick, D. Privman: A library for partitioning applications. In USENIX
Annual Technical Conference, FREENIX track (2003), pp. 273–284.

[12] Lind, J., Priebe, C., Muthukumaran, D., O’Keeffe, D., Aublin, P., Kelbert, F.,

Reiher, T., Goltzsche, D., Eyers, D. M., Kapitza, R., Fetzer, C., and Pietzuch,

P. R. Glamdring: Automatic application partitioning for intel SGX. In USENIX
Annual Technical Conference (ATC) (2017), pp. 285–298.

[13] Liu, S., Tan, G., and Jaeger, T. Ptrsplit: Supporting general pointers in automatic

program partitioning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA, 2017), CCS ’17,

Association for Computing Machinery, p. 2359–2371.

[14] Liu, Y., Zhou, T., Chen, K., Chen, H., and Xia, Y. Thwarting memory disclosure

with efficient hypervisor-enforced intra-domain isolation. In 22nd ACM Confer-
ence on Computer and Communications Security (CCS) (2015), pp. 1607–1619.

[15] Mambretti, A., Onarlioglu, K., Mulliner, C., Robertson, W., Kirda, E.,

Maggi, F., and Zanero, S. Trellis: Privilege separation for multi-user appli-

cations made easy. In International Symposium on Research in Attacks, Intrusions
and Defenses (RAID) (2016), pp. 437–456.

[16] Rubinov, K., Rosculete, L., Mitra, T., and Roychoudhury, A. Automated

partitioning of Android applications for trusted execution environments. In

International Conference on Software engineering (ICSE) (2016), pp. 923–934.
[17] Tilevich, E., and Smaragdakis, Y. J-orchestra: Automatic java application

partitioning. In European conference on object-oriented programming (2002),

Springer, pp. 178–204.

[18] YongzhengWu, Jun Sun, Y. L., and Dong, J. S. Automatically partition software

into least privilege components using dynamic data dependency analysis. In

International Conference on Automated Software Engineering (ASE) (2013), pp. 323–
333.

[19] Zdancewic, S., Zheng, L., Nystrom, N., and Myers, A. Secure program parti-

tioning. ACM Transactions on Compututer Systems (TOCS) 20, 3 (2002), 283–328.
[20] Zheng, L., Chong, S., Myers, A., and Zdancewic, S. Using replication and

partitioning to build secure distributed systems. In IEEE Symposium on Security
and Privacy (S&P) (2003), pp. 236–250.

6

https://www.exploit-db.com/exploits/44452/
https://www.exploit-db.com/exploits/44452/
https://www.gnu.org/software/wget/
https://www.symantec.com/security-center/vulnerabilities/writeup/105014
https://www.symantec.com/security-center/vulnerabilities/writeup/105014
https://www.openssh.com/

	Abstract
	1 Introduction
	2 Fine-Grained Partitioning
	2.1 Identifying Hot Spot Functions
	2.2 Creating Primary Functions
	2.3 Creating Secondary Functions

	3 Communication between Partitions
	4 Implementation
	5 Evaluation
	5.1 Effectiveness
	5.2 Performance

	6 Related Work
	7 Limitations
	8 Conclusion
	References

