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ABSTRACT
As software vulnerabilities remain prevalent, automatically detect-
ing software vulnerabilities is crucial for software security. Recently
neural networks have been shown to be a promising tool in detect-
ing software vulnerabilities. In this paper, we use neural networks
trained with program slices, which extract the syntax and semantic
characteristics of the source code of programs, to detect software
vulnerabilities in C/C++ programs. To achieve a strong prediction
model, we combine different types of program slices and optimize
different types of neural networks. Our result shows that combin-
ing different types of characteristics of source code and using a
balanced ratio of vulnerable program slices and non-vulnerable
program slices a balanced accuracy in predicting both vulnerable
code and non-vulnerable code. Among different neural networks,
BGRU performs the best in detecting software vulnerabilities with
an accuracy of 94.89%.

CCS CONCEPTS
• Security and privacy → Software and application security;
• Computing methodologies→ Neural networks.
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1 INTRODUCTION
Software vulnerabilities is a severe threat to network and informa-
tion security. As hackers and malware frequently exploit software
vulnerabilities to compromise computer systems, popular software
vendors offer as much as $1 million dollars reward to individuals
who report software vulnerabilities [1–4].
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For decades, a large number of studies have been contributed
to detecting vulnerabilities at the source code level [6, 8, 12, 16, 23,
25]. Mainly they are based on code similarity detection or pattern
matching. Unfortunately code similarity detection is not well-suited
for detecting vulnerabilities not caused by code cloning, while
pattern matching requires human experts to define patterns that
represent vulnerabilities.

To address these limitations, neural networks have been used
recently to detect vulnerabilities [7, 10, 18, 20, 21, 26]. The neural
networks have been widely used in image processing and speech
recognition as it can provide the high accuracy rate of prediction
while insignificantly relying on human experts in feature extraction.
As software vulnerabilities can be caused by a wide range of reasons,
the neural networks can be served as a useful tool in detecting
vulnerabilities. Unlike pattern-based methods, the neural network
eliminates influence of human bias in feature extractions.

Amain focus of this paper is to develop a strong predictive model
using neural networks for detecting the vulnerability of C/C++
programs automatically. Unlike previous work that generates in-
dividual models from different types of characteristics extracted
from the source code of the programs [13], we build the model on
a dataset that combines different types of characteristics extracted
from source code. We find that the model built from the combined
dataset outperforms the individual models fitted with individual
dataset.

To develop a strong predictive model, we optimize the neural
networks with different hyperparameters such as optimizer, gating
mechanism, and activation functions in our model development.
Our results show that the BGRU model’s accuracy rate is as high
as 94.6% for a training set and 92.4% for a test set.

The major contributions of this paper is as follows:
• We show that the accuracy of the model built on the com-
bined dataset of program slices surpasses the models built
on individual dataset.

• By balancing the ratio of vulnerable program slices (class
1) and non-vulnerable program slices (class 0), the model
performs well with a high balanced accuracy rate of 93%
which is comparable to that of a training set. The high sensi-
tivity and specificity imply the model has a good ability in
explaining both vulnerability and non-vulnerability classes.

• We compare different types of neural networks and show
that BGRU performs the best.

• The model built with BGRU achieves an accuracy rate of
94.89% by utilizing 10X more program slices.

• We have implemented a chain of tools for generating the
model from program slices and open sourced the tools
at https://gitlab.com/vulnerability_analysis/vulnerability_
detection/.
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2 BACKGROUND
We use the dataset of C/C++ programs collected by Zhen Li, et
al. [13]. It contains 1,592 programs from the National Vulnerability
Database (NVD) and 14,000 programs from the Software Assurance
Reference Dataset (SARD). The programs were pre-processed and
transformed to 420,627 slices called semantic vulnerability candi-
dates (SeVC) which include 56,395 vulnerable slices (13.5 % of total
slices) and 364,232 non-vulnerable slices (86.5 % of total slices).

The slices of programs were divided into the following four main
types regarding the vulnerability syntax analysis obtained from
Checkmarx:

• Library or API Function Call (FC). This vulnerability
type is associated with library or API functions calls in pro-
gram which contain 811 C/C++ library/API function calls.
This type represents 15.3% of total sample slices, comprising
13,603 vulnerable slices and 50,800 non-vulnerable slices.

• Array Usage (AU). This vulnerability is related to the use
of arrays such as improper uses of array element access,
array, and arithmetic, accounting for 10% of total slices which
contains 10,926 vulnerable slices and 31,303 non-vulnerable
slices.

• Pointer Usage (PU). This vulnerability type is correlated
to inappropriate uses of pointer arithmetic and references
which are a main type of sample slices comprising 69.4%
of total slices which includes 28,391 vulnerable slices and
263,450 non-vulnerable slices.

• Arithmetic Expression (AE). This vulnerability type is
related to improper arithmetic expressions such as integer
overflow which represents 5.3% of total slices, comprising
3,475 vulnerable slices and 18,679 non-vulnerable slices.

2.1 Generating Program Slices
The program slices are generated in a two-phase process. First,
Syntax-based Vulnerability Candidates (SyVCs) are extracted from
Program Dependency Graph for each function of the C/C++ pro-
grams. Each SyVC embodies syntax characteristics of a vulnera-
bility. Second, Semantics-based Vulnerability Candidates (SeVCs)
are produced from SyVCs. Each SeVC extends a SyVC with data
dependency and control dependency information. The process is
illustrated in Figure 1. More details on program slice generation
can be found in [13].

Source Code Syntax
 (SyVC)

Semantic
(SeVC)

Slices

Figure 1: Generating Program Slices fro Source Code.

2.2 Transforming Program Slices into Vectors
The program slices are then transformed into vectors to feed into
neural networks. Each slice was transformed to an array of tokens

in which all comments and white spaces were also removed be-
fore transformation and tokens were mapped with list of function
names.

For each slice, the tokenized outputs were stored in pickle file
and labeled with the unique sample ID (no duplicated ID). Each
pickle file contains an array of 5 elements including a list of tokens,
a target label (0/1), list of functions, vulnerability type, and sample
ID with a main function name.

The tokens from each pickle file were converted to vectors using
Word2Vector model built from Gensim package. The Word2Vector
model converted tokens to vector based on cosine similarity dis-
tance which measures the angle between vectors in which the
high similarity score indicates high similarity and a closer distance
between tokens [15]. The cosine similarity is computed as follows:

sim(X ,Y ) =
X · Y
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The visualization of words in Word2Vector model is shown in
Figure 2. As we can see, different program slice types have ex-
tremely different distributions of cosine similarities. This indicate
that different program slice types convey different characteristics
of vulnerabilities.

   Function Calls             Array Usage      Pointer Usage         Arithmetic Expression

Figure 2: Visualized Words in W2Vmodel for Each Vulnera-
bility Type

3 MODEL OPTIMIZATION
3.1 Balancing Datasets
The training set should have a balanced number of non-vulnerable
program slices and vulnerable program slices to ensure that the
model can produce unbiased predictions. However, [13] used an
imbalanced dataset in which non-vulnerable program slices only
accounts for 15.6% of total program slices while vulnerable program
slices accounts for 84.4% of total program slices.

To illustrate the issue, we compute the confusion matrix for
the model fitted with imbalanced class sample (75% of class 0 and
25% of class 1). The result is presented in Table 1. The model has
considerably more ability to predict class 0 as its specificity and
negative prediction are significantly higher than its sensitivity and
precision, respectively. Thus, the accuracy rate is biased towards
class 0.

In order to solve an imbalanced class issue, a training set was re-
sampled using down-sampling method to randomly extract samples
from a majority class (label 0) from a training set. The new sample
set has a balanced class label, comprising 50% vulnerable vector
arrays and 50% non-vulnerable vector arrays.
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Table 1: Confusion Matrix for Imbalanced Dataset

Predicted Class
Positive Negative Rate

Positive 8.0 48.0 0.14285 Sensitivity
Negative 14.0 130.0 0.90277 Specificity

0.36363 0.73033 0.60999 Accuracy
Precision Negprediction

The process of down-sampling is shown in Figure 3. In the last
step, all vector arrays for each slice program are adjusted to have a
same length (same number of rows) as each array of vectors have
different number of rows, but the neural networks required all
vector input to have a same dimension (same number of columns
and same number of rows). The mean of vector lengths for all slice
programs was calculated and use as the threshold to adjust the
vector lengths. If an array of vectors has a shorter length than the
mean, it will embedwith the zero array. For the array of vectors with
longer length than the mean length, the vectors were truncated.

Vectors
(Imbalanced Class)

Training Set

Test Set

Deep Learning Model

Down-sampling

Model
Evaluation

Same 
Dimensional

Vectors

Figure 3: Down-sampling and Vector Adjustment

With the balanced dataset, we can see that the model has ap-
proximately same ability to predict class 0 and class 1, as shown
in Table 2. This shows that balancing the dataset is crucial for the
model to have balanced prediction power for both classes.

Table 2: Confusion Matrix for Balanced Dataset

Predicted Class
Positive Negative Rate

Positive 1186.0 167.0 0.87916 Sensitivity
Negative 672.0 4018.0 0.86408 Specificity

0.65236 0.96108 0.86747 Accuracy
Precision Negprediction

3.2 Combining Datasets
In previous work [13], different models are built using different
program slice types. From the visualization of Word2Vector models
for each program slice type, presented in Figure 2, we note that
different program slice types capture different characteristics of
vulnerabilities, so we explore the use of a dataset combined from
all different program slice types.

We perform a preliminary study using 1,000 randomly sampled
program slices from each individual program slice types and 1,000
randomly sampled program slices among different program slice
types, i.e. combined dataset. We compare the accuracy, sensitivity,
and specificity for the models built using the sampled program
slices from individual program slice types and the model built using

the sampled program slices from the combined dataset. Our result
is shown in Table 3.

Table 3: Comparison between individual datasets and com-
bined dataset

Type Accuracy Sensitivity Specificity
API 53% 69% 46%
AU 64% 79% 62%
PU 38% 83% 31%
AE 61% 61% 62%

COMBINED 61% 91% 53%

The model fitted with the combined data types outperform all
models fitted with individual datasets in explaining the target class
1 (vulnerable) as the sensitivity is as high as 91%. Compared to API
and PU models, the combined model performs better in detecting
the target class 0 (non-vulnerable). The overall performance indi-
cates that the combined model performs similarly to AU and AE
models. The combined dataset is more appropriate for predicting
vulnerabilities.

4 EVALUATION
4.1 Optimizers
There are several optimizers that can be applied to optimize neural
network such as Stochastic Gradient Descent (SGD) by default,
Adamax (SySe Paper), RMS Prop, and Adam.

Adam optimizer is a combination of RMSprop and SGD with
momentum, which is an adaptive learning rate method and com-
putationally efficient as it computes individual learning rates for
different parameters.

According to Kingma et al. [9], ADAMmethod is appropriate for
problems with large dataset and/or parameters, with non-stationary
objectives, and for problems with very noisy and/or sparse gradi-
ents. ADAM optimizer will improve our neural network when a
network has weak signals which is not sufficient to tune its weights
effectively. Given the nature of software vulnerabilities which con-
tain various causes, the ADAM method is an appropriate method
to further examine and apply towards the model development in
this paper.

We explore three different optimizers, ADAMAX, SGD, and
ADAM, in order to find the best optimizer for our neural networks.
The summary of models with ADAMAX and SGD optimizer is
presented in Table 4.

We can see that the ADAM optimizer performs the best among
the three optimizers for all program slice types. ADAM achieves
an average accuracy rate of 90.0%. This is approximately 5% more
than the accuracy rate of ADAMAX, which is used in previous
work [13].

4.2 BGRU v.s. BLSTM
In this section, we compare the performance of different neural
networks with a focus on BGRU and BLSTM.

Comparing to LSTM, GRU has no explicit memory unit and no
forget gate and update gate, hence it trains the model faster than
LSTM, but may lead to a lower accuracy rate. GRU also has a simpler
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Table 4: Accuracy Rate with Different Optimizers

Type ADAMAX SGD ADAM
API 86.7% 63.1% 89.5%
AU 86.0% 58.6% 89.2%
PU 82.4% 62.3% 90.9%
AE 83.1% 67.1% 90.5%

architecture which reduces the number of hyperparameters. LSTM
comprises both update gate and forget gate and remembers longer
sequences than GRU. However, LSTM is found to be comparable to
GRU on sequence modeling.

Bidirectional Recurrent Neural Networks provides the original
input sequence to the first layer and a reversed copy of the input
sequence to the second layer, so there are two layers side-by-side.
Bidirectional RNNs are found to be more effective than regular
RNNs. It has been widely used as it can overcome the limitations
of a regular RNN [17]. The regular RNN model preserves only
information of the past. Whereas, These Bidirectional networks
have access to the past as well as the future information; therefore,
the output is generated from both the past and future context and
leads to a better prediction and classifying sequential patterns. The
output from fitting LSTM and BLSTM models also indicates that
the bidirectional unit outperforms the regular LSTM holding other
hyperparameters constant, as shown in Figure 4.

BLSTM LSTM

Figure 4: Model Fitting of BLSTM and LSTM

The BLSTM model has lower loss rate of 0.58 compared to a loss
rate of 0.60 from LSTM. The BLSTM also have a higher accuracy
rate of 64.2% than that of LSTM model of 62.8%. Note that both
models were fit with same input parameter and dataset. The models
were built with a small dataset of 1000 slices so the accuracy rate
may not be high. The larger dataset would be used to fit the model
in the later section.

The confusions matrix provides more details for model perfor-
mance and validation of the models trained with 4,000 samples (80%
of 5,000 samples) in Figure 5. The decision threshold is set to 0.5
for validation. The BGRU model outperforms the BLSTM in most
metrics except the sensitivity. It has a higher accuracy, precision,
and specificity which indicates the stronger ability of model to
predict both vulnerability and non-vulnerability types.

For a larger dataset of 30,000, the BGRU also outperforms BLSTM
in every metrics. The obvious improvement is the sensitivity which
the BGRU has 90% of sensitivity which is 8% higher than that of
BLSTM, indicating that the BGRU model can explain the vulnera-
bility class better than the BLSTM, as shown in Figure 6. The model

BGRU BLSTM

Figure 5: Confusion Matrix for BGRU and BLSTM (fitted
with 1,000 samples)

built from 100,000 datasets also shows the similar performance in
which BGRU model performs better than BLSTM. Comparing to
BLSTM, The BGRU network typically train, converge, and learn
faster. Thus, the BLSTM models that fit with 10 epochs may not
reach convergent which can explain why the models for BGRU
perform better in 10 epochs.

BGRU BLSTM

Figure 6: Confusion Matrix for BGRU and BLSTM (fitted
with 30,000 samples)

4.3 Combined Datasets
We combine the total 420,067 programs slices into one dataset,
comprising 64,403, 42,229, 291,281, and 22,154 from API, AU, PU,
and AE types, respectively. The combined dataset was spitted into
a training set and a test set with 80/20 ratios. Then, the training set
is down-sampling to ensure that the target classes (vulnerable and
non-vulnerable) in dataset are balanced.

The model is built with ADAM optimizer. The hyperparameters
of include Bidirectional gated recurrent unit (BGRU) of 256 neuron
units with 2 hidden layers. Tanh function was applied to produce
the outputs of 2 hidden layers and sigmoid function was applied
to compute activation outputs in the last layer. The learning rate
is 0.1 with batch size of 32, vector inputs of shape [mean vector
lengths x 30]. The cross-entropy loss was chosen as it can speed up
the convergence of loss.

We present the learning process in Figure 7, the learning process
is faster in the beginning as the loss rates significantly decrease in
epoch 1 to 3. The accuracy rates increase for as the training process
goes from epoch 1 to 10. The model has the highest accuracy rate
of 94.89% in epoch 9 and starts to decrease in epoch 10 as the error
rate has no longer minimized. The network outputs range between
0 and 1 as a sigmoid function is applied the output layer.

Table 5 shows the confusion matrix on the test set. We can see
that the model performs well to explain both target classes as the
sensitivity and specificity are over 90%. However, the F1 score was
further computed in the next section to blend the precision and
sensitivity.

As presented in Figure 8, the F1 scores increase while balanced
accuracy decreases as the threshold increases. The peak point of
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Figure 7: Model Fitting with a Training Set

Table 5: Confusion Matrix for Test Set

Predicted Class
Positive Negative Rate

Positive 10768.0 439.0 0.96082 Sensitivity
Negative 5898.0 67019.0 0.91911 Specificity

0.64610 0.99349 0.92467 Accuracy
Precision Negprediction

balanced accuracy is at 0.5. F1 is utilized to blend precision and
specificity for model evaluation. The accuracy rate keeps increasing,
hence balanced accuracy is more accurate as accuracy is biased
with the increasing threshold.

Figure 8: F1 v.s. Accuracy Rate for Different Thresholds

Overall, the model fitted with full dataset performs well with a
high balanced accuracy rate of 93%. The high sensitivity and speci-
ficity imply a good ability of model in explaining both vulnerability
and non-vulnerability classes. The model performs better in pre-
dicting non-vulnerability class as it has 99% in negative prediction.
However, the predictive power for vulnerability class is still moder-
ately strong as the F1 ranges between 75% to 80% across different
thresholds.

5 RELATEDWORK
Many techniques have been proposed to detect vulnerabilities in the
source code using various human-defined features such as source
code text features [5], complexity, code churn, and developer ac-
tivity metrics [19], abstract syntax trees [24], function imports and
function calls [16]. The main drawback of these techniques is that
they requires considerable human effort to define these features.

Recent techniques use deep learning on the source code of pro-
grams to detect vulnerabilities so that no human experts is needed
to define features [11, 13, 14, 27]. They either rely on one type of
training data or use imbalanced training data. Our work differs
from them by using a balanced dataset combined from different
types of training data.

Rather than using static information collected from the source
code, some techniques apply machine learning on dynamic infor-
mation collected from the sequences of function calls to detect
vulnerabilities [6, 22]. Particularly deep learning models have been
shown to have better accuracy than traditional machine learning
models [22].

6 CONCLUSION
We present a study on using neural networks for detecting soft-
ware vulnerabilities in this paper. The neural networks are trained
with program slices extracted from the source code of 14,000 C/C++
programs. We compare different types of training data and differ-
ent types of neural networks. Our result shows that the model
combining different types of characteristics of source code sur-
passes models based on individual type of characteristics of source
code. Using a balanced number of vulnerable program slices and
non-vulnerable program slices ensures a balanced accuracy in pre-
dicting both vulnerable code and non-vulnerable code. We find that
BGRU performs the best among other neural networks. Its accuracy
reaches 94.89% with a sensitivity of 96% and a specificity of 91%.
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