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ABSTRACT

Cyberattacks typically exploit software vulnerabilities to compro-
mise computers and smart devices. To address vulnerabilities, many
approaches have been developed to detect vulnerabilities using deep
learning. However, most learning-based approaches detect vulner-
abilities in source code instead of binary code. In this paper, we
present our approach on detecting vulnerabilities in binary code.
Our approach uses binary code compiled from the SARD dataset
to build deep learning models to detect vulnerabilities. It extracts
features on the syntax information of the assembly instructions
in binary code, and trains two deep learning models on the fea-
tures for vulnerability detection. From our evaluation, we find that
the BLSTM model has the best performance, which achieves an
accuracy rate of 81% in detecting vulnerabilities. Particularly the
F1-score, recall, and specificity of the BLSTM model are 75%, 95%
and 75% respectively. This indicates that the model is balanced in
detecting both vulnerable code and non-vulnerable code.
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1 INTRODUCTION

The security and reliability of computer systems are essential to
our daily lives. However, software vulnerabilities allowed many
real-world cyberattacks to breach the security and reliability of
computer systems and caused huge financial loss [1, 3, 17, 21]. For
example, a recent data breach took advantage of a vulnerability to
steal the private information of over 500 millions Facebook users
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and caused the loss of more than $5 billion U.S. dollars [1]. As a
result, it is critical to detect and address vulnerabilities effectively
and efficiently.

Particularly detecting vulnerabilities in off-the-shelve software
in which only the binary code is available will allow users to rapidly
mitigate the vulnerabilities without the need to wait for software
vendors to release patches for the vulnerabilities [8]. This will
considerably reduce the risks of cyberattacks because on average it
takes over a month for software vendors to fix a vulnerability [6].

With the advances of machine learning and deep learning tech-
niques, learning-based approaches have achieved success in many
areas of software security and reliability [2, 4, 5, 7, 10-15, 22—-25].
The vast majority of them focus on open-source projects and extract
features from the program source code for model training, because
the program source code contains a wealth of information about the
programs, such as data types, variable names, function prototypes,
and high-level program constructs. Unfortunately the binary code
of off-the-shelve software lacks the aforementioned information
provided by program source code. Thus it is challenging to apply
machine learning on program binary code.

This paper presents our approach on detecting vulnerabilities in
binary code using deep learning. It addresses two major challenges.

First, deep learning algorithms require features to classify vulner-
able code and non-vulnerable code. What kind of features should
we extract from binary code?

Second, we need to collect a dataset of binary code, choose the
granularity of our vulnerability detection, and establish a ground-
truth for our vulnerability detection. Do we identify vulnerabilities
at the level of programs, functions, or basic blocks? How do we get
the labels for vulnerable code and non-vulnerable code?

Unlike prior work that treats program code as a bag of words or
tokens, our approach uses the syntax information on the assembly
instructions as features to train machine learning and deep learning
models. These features include instruction mnemonics, operand
types, operand positions, and operand values.

Our approach creates the dataset of binary code by compiling
the C/C++ programs from the SARD dataset [20], which is widely
used as a test bed for detecting vulnerabilities in the source code.
The SARD dataset comes with labels for vulnerable code and non-
vulnerable code at the level of functions. We choose to detect vul-
nerabilities at the granularity of functions so that we can directly
use the labels come with the dataset.

To choose the optimal hyperparameters, we use grid search to
train a LSTM model with different values of hyperparameters on
the dataset and compare the performance of the models. We use
the values of hyperparameters that produce the best performance.

Overall our work makes the following contributions:
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e We use statistics of the syntax information of assembly in-
structions in program binary code as features for detecting
vulnerabilities in program binary code.

o Using these features, we build two deep learning models,
BLSTM and BGRU to detect vulnerabilities.

e Our evaluation shows that the syntax features extracted from
assembly instructions are effective for detecting vulnerabili-
ties. Our BLSTM model achieves an accuracy of 81.3%.

The paper is organized as follows. We present our methodology
in Section 2. Section 3 describe the details on how we train our deep
learning models, respectively. Particularly we present evaluation
results on vulnerability detection in Section 3.6. Finally we discuss
related work in Section 4 and conclude in Section 5.

2 METHODOLOGY

The program binary code is produced by compiling C/C++ programs
in the SARD dataset. The CFG (Control Flow Graph) is extracted
from each function in the binary code using angr, a python frame-
work for analyzing binary code [19]. The assembly instructions
and operands are extracted from the basic blocks and transformed
to a vector using the CounterVectorizer for feature extraction. We
train neural networks including Long Short-Term Memory (LSTM),
Bidirectional LSTM (BLSTM), and Bidirectional GRU (BGRU).

2.1 Dataset

Our dataset consists of the binary programs generated by compiling
the 13,443 programs written in C/C++ programming languages,
which are from the Software Assurance Reference Dataset (SARD).
The programs were compiled with gcc on Linux. They comprise
44,494 binary functions which include:

e 31,009 non-vulnerable functions (69.69 % of total functions)
e 13,485 vulnerable functions (30.31 % of total functions)

Dependent Variable. A binary variable that has a value of 0 for
vulnerable function and 1 for non-vulnerable function.

Independent Variables. The numeric vectors of 105 features are
extracted from each basic block in all functions using the Counter-
Vectorizer Model. Our features focus on the syntax information of
assembly instructions, i.e. the mnemonics and operands of assembly
instructions, because it is straightforward to extract them. We plan
to use control flow and data flow information between basic blocks,
which can be extracted from binary code using more complicated
program analysis [8], for our future work.

The sample observations of dataset are shown in Figure 1 in
which each observation is a vector containing the total number of
each of the 105 feature appeared in basic blocks of a binary function.
The details of how the dataset was generated and feature extraction
were discussed in the data preprocessing section.

2.2 Data Preprocessing

Instructions and Operands Extraction. The process to extract
the set of instructions and operands from the binary programs
is shown in Figure 2. The first step is to generate the CFG for
each vulnerable function and non-vulnerable function of binary
programs. The second step involves the machine instructions and
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Figure 1: Sample Observations.

operands extraction. Finally, the last step extracts unique features
from the set of machine instructions and operands of all functions.

Step 1: The vulnerable functions and non-vulnerable functions
were extracted from a binary program (object files). and the address
of each function was parsed as an input for the next step.

Step 2: Each binary function was parsed using angr with a func-
tion address to construct Control Flow Graph which provides all
basic blocks belonging to the function.

Step 3: For each function, the machine instructions and operands
were extracted from the basic blocks as a set of tokens with an
assigned test number. The output of this step is the set of instruction
mnemonics and operands for all the instructions in each function.
We use the following information on operands:

a) Data types including qword, dword, byte, etc.

b) Registers including both 32-bit and 64-bit registers
¢) Memory addresses

d) Integer constants

Particularly we choose to include integer constants because prior
work [16] shows that they have high feature weight in uniquely
identifying program code. The operands are divided into 4 groups
and labeled by number 1 and 2 which are operand positions for
each assembly instruction.

Transforming Feature to Vectors. There are a total of 105 unique
features extracted from the sets of instructions and operands for all
functions, which includes 54 machine instructions and 51 operands
comprising 7 data types, 40 registers, 2 groups of addresses, 2 groups
of constants, as presented in Table 1.

Table 1: Features Extracted from All Functions.

Operands (position 1, position 2)

Instructions Data Type | Register | Address | Constant
mov, add, call byte; eaxq address; | constant;
lea, sub, push bytes eaxs addresss | constants
dword; raxi
dwords raxy

Each unique feature represents 1 instruction or operand which is
represented by a column of matrix, while the value of each cell is the
count of the feature in that set of instructions and operands from
each function. The row represents the vectors of one function with
a target label 0 for non-vulnerability function and 1 for vulnerability
function. In short, each vector represents the total number of each
feature appeared in basic blocks of a binary function.
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Figure 2: Extracting Features From Binary Programs.

The CounterVectorizer Model was utilized to transform the set
of instructions and operands of each function into a vector on the
basis of the frequency (count) of each feature.

Z-score Normalization. Support Vector Machine algorithm clas-
sifies the data by finding the hyperplane that maximizes the margin
between the two classes. Thus it can be sensitive to feature scaling.
To achieve an accurate model, we normalize the set of vectors be-
fore fitting the SVM model. Additionally, the normalized data were
later used to build neural networks. The Z-score normalization
transforms vectors of each feature by subtracting the mean and
then scaling to unit variance. The normalized data have a normal
distribution with a mean of 0 and a standard deviation of 1.

Dataset Splitting. The 44,494 observations were into 3 sets: Train-
ing, Validation, and Test sets using stratify sampling to ensure the
proper ensure that each class within 3 sets has a proper represen-
tation of the entire population. There are a 69.63% of class 0 and
30.30% of class 1 in each set which represent the entire population
of class 0 and class 1 in the original dataset, as shown in Table 2.

We selected 10% of the dataset randomly as the test set for an
unbiased evaluation. The remaining data were split into a training
set (70%) for fitting model and a validation set (30%) for model
evaluation while tuning hyper-parameters.

Table 2: Number of Observations in Each Dataset.

Train Set | Validation Set | Test Set
Class 0 19,535 8,373 3,101
Class 1 8,495 3,641 1,349

3 NEURAL NETWORKS

Each vector array discussed in Section 2 represents the number of
feature counts in one binary function. The vector arrays were re-
shaped from two-dimensional vectors to three-dimensional vectors
as input to deep learning models.

3.1 Hyperparameters

We use two different base models to search for the optimal hyper-
parameters for our deep learning models. Both base models use
Long short-term memory (LSTM), which contains 256 neuron units
and 2 hidden layers fitted with a batch size of 32 for 100 epochs.
The “Sigmoid” function was applied to the output layer. The binary
cross-entropy loss is selected as loss function as it can speed up
the learning process and convergence. The models use the “Adam”
optimizer and the learning rate is 0.001. For the hidden layer, base
model 1 uses the “ReLu” activation function while base model 2
uses the “Tanh” activation function.

Base model 1 starts to be overfitted after Epoch 40 as the valida-
tion loss starts to increase while the training loss keeps decreasing,
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as shown in Figure 3. The highest validation accuracy is 81.10%
with the loss rate of 0.34 at Epoch 40.
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Figure 3: Base Model 1 Loss.

As shown in Figure 4, base Model 2 starts to be overfitted after
Epoch 31 as the validation loss reaches the minimum and is constant
while the training loss keeps decrease. Comparing to base model 1
(“ReLu”), base model 2 (“Tanh”) performs slightly better as it has
higher accuracy rate and lower loss rate. Thus, we choose to use
the “Tanh” activation function to develop our neural networks.
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Figure 4: Base Model 2 Loss.

3.2 Bidirectional Recurrent Neural Networks

Bidirectional Recurrent Neural Networks promote the better un-
derstanding of context as it provides the original input sequence
to the first layer and a reversed copy of the input sequence to
the second layer, so there are two layers side-by-side. These Bidi-
rectional networks have access to the past as well as the future
information; therefore, the output is generated from both the past
and future context and leads to a better prediction and classifying
sequential patterns. Additionally, Bidirectional RNNs are found to
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be more effective than regular RNNs. It has been widely used as it
can overcome the limitations of a regular RNN [18]. The regular
RNN model preserves only past information. As a result, we choose
to use BLSTM and BGRU.

3.3 BLSTM

The BLSTM model was fitted with the same architecture as the Base
Model 2 except the Bidirectional LSTM was applied instead of reg-
ular LSTM. The performance metrics of LSTM and BLSTM models
shown in Table 3 indicates that the bidirectional unit outperforms
the regular LSTM holding other hyperparameters constant.

The BLSTM model slightly performs better than the LSTM Model.
It has a lower loss rate of 0.31 compared to a loss rate of 0.32 from
LSTM (Figure 5 and 6). The BLSTM also have an accuracy rate
of 82%, which is higher than LSTM model’s accuracy of 81%. The
BLSTM starts to overfit after Epoch 33 similar to the LSTM model
which starts to overfit after Epoch 31. The learning rate was adjusted
in the next model to reduce the overfitting effect beyond epoch 30.
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Figure 5: BLSTM Accuracy.
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Figure 6: BLSTM Loss.
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3.4 BGRU

In this phase, we built the model with Bidirectional Gated Recurrent
Unit (BGRU). GRU has no explicit memory unit and no forget gate
and update gate, hence it trains the model faster than LSTM, but may
lead to a lower accuracy rate. Comparing to LSTM, the GRU has a
simpler architecture which reduces the number of hyperparameters.
The BGRU model performs slightly worse than the LSTM model
((Figure 7 and 8). Its accuracy rate (validation) is 81% which is
slightly lower than that of the BLSTM model.
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Figure 7: BGRU Accuracy.
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Figure 8: BGRU Loss.

Table 3: Deep Learning Model Comparison.

Model Accuracy Loss
Training | Validation | Training | Validation
LSTM 0.82 0.81 0.29 0.32
BLSTM 0.83 0.82 0.28 0.31
BGRU 0.82 0.81 0.30 0.32
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3.5 Threshold Value for Binary Classification

The Sigmoid activation function was applied to all previous models
to produce the Neural Network outputs in the last layer. The outputs
are the decimal number ranges from 0 to 1, indicating the probability
of the outputs to be classified as class 0 or 1 based on the chosen
threshold. The previous models use the threshold of 0.5 which was
applied to outputs for predicting the target class. For example, if
the outputs are less than or equal to 0.5, they are classified as class
0 (Non-vulnerability functions). According to the performance of
the previous models, the models suffer from some Type I and Type
II errors, thus the threshold value needs to be tuned to minimize
the cost of Type 1 Error and Type 2 Error.

Figure 9 shows the accuracy rates and F1 scores of validation
sets across different threshold values. The optimal threshold is 0.45
which has the highest accuracy rate and F1 score.
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Figure 9: Accuracy rates and F1 scores across different
threshold.

3.6 Vulnerability Detection

Our BLSTM model contains 256 neuron units and 2 hidden layers
fitted with a batch size of 32 for 50 epochs. The accuracy curve of the
model is presented in Figure 10. The model has a good performance
with an accuracy rate of 81%.

As presented in Table 4, the BLSTM model has a F1 score of
75% and recall of 95% in detecting vulnerable code. Its specificity is
75%. The macro average results and weighted average results are
similar. This indicates that the model performs well in classifying
vulnerable code and non-vulnerable code.

Table 4: Performance of BLSTM on the Test Set

Precision | Recall | F1-score | Support
Class 0 0.97 0.75 0.85 3,101
Class 1 0.63 0.95 0.75 1,349
Accuracy 0.81 4,450
Macro Ave. 0.80 0.85 0.80 4,450
Weighted Ave. 0.87 0.81 0.82 4,450
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Figure 10: Vulnerability Detection Accuracy.

4 RELATED WORK

In this section, we discuss prior work on vulnerability detection.
We categorize prior work into dynamic analysis, which execute
target programs, and static analysis, which do not execute target
programs. For static analysis, we focus on the work using machine
learning and deep learning.

4.1 Machine Learning

VDiscover [5] learns from the sequences of API calls to predict
vulnerabilities. It leverages three machine learning algorithms: lo-
gistic regression, multi-layer perceptron (MLP), and random forest.
The dataset is composed of the sequences of API calls collected
both statically from binary code and dynamically from program
execution.It achieves an accuracy of 55% on vulnerable code and
83% on non-vulnerable code, with a false positive rate of 45%.

Yamaguchi et al. extract the information relevant to API function
calls for all the functions of a target program, from the source code
of the target program, then convert the extracted information into
vectors, and use principal component analysis (PCA) on the vectors
to identify the dominant usage pattern of API functions for each
function in the target program [25]. By comparing the usage pattern
of functions with that of a known vulnerable function, it predicts
vulnerable functions.

VulPecker uses code similarity analysis to detect vulnerabili-
ties [13]. It extracts features from vulnerability patches, and uses
SVM to choose the best-performing code similarity algorithm for
distinguishing patched code and unpatched code.

4.2 Deep Learning

Wang et al. use syntax information of Java programs to predict
bugs. They collect tokens representing method calls, method and
type declarations, and control flows from the abstract syntax tree
(AST) of Java code, and build deep belief network (DBF) models on
the tokens to generate semantic features to distinguish programs
containing bugs and programs not containing bugs [22]. The eval-
uation shows that the semantic features considerably outperform
the traditional manually-extracted features such as lines of code,
number of operators, and number of methods.



ICMLC 2022, February 18-21, 2022, Guangzhou, China

To predict vulnerabilities, Wu et al. use the sequences of C library
function calls as the dataset to build neural network models [24].
They treat each sequence of C library functions calls as a list of
word tokens and convert them into vectors, then train three neural
network models: CNN, LSTM, and CNN-LSTM with the vectors.
Their evaluation shows that the neural network models remarkably
perform better than the MLP used by VDiscover [5].

VulDeePecker [14] uses code gadgets, program statements that
are data dependent or control dependent with each other, as the
features to train neural networks to detect vulnerabilities. Focusing
on library and API function calls, it extracts relevant program slices
as code gadgets and converts them into vectors using word2vec. It
then builds BLSTM models on the vectors for vulnerability detec-
tion. Comparing to prior work based on machine learning, such as
VulPecker [13], VulDeePecker significantly reduces false positives.

Our prior work [2] detects vulnerabilities using LSTM, BLSTM,
and BGRU on the syntax and semantic characteristics of program
source code. Unlike this work, it extracts features from source code
program slices relevant to four different types of characteristics:
library or API function calls, array usage, pointer usage, and arith-
metic expressions. The highest accuracy achieved by these models
is 94%. While it achieves higher accuracy than this work, it requires
access to program source code, which is not required by this work.

4.3 Dynamic Analysis

Typically static analysis can explore more program code and pro-
gram state than dynamic analysis. But static analysis tends to have
false positives as it has to approximate program state which may
not be realized in actual program executions. Unlike static analysis,
dynamic analysis [9, 10, 23] observes the exact program state that
can be realized in program executions so it tends to have fewer
false positives, although it suffers from lower code coverage.

5 CONCLUSION

This paper presents our approach to detecting vulnerabilities in
binary code using deep learning. We use the binary code compiled
from C/C++ programs in the SARD dataset and choose the syntax
information on assembly instructions in the binary code as features
to train deep learning models. Our evaluation shows that the BLSTM
model outperforms the BGRU model. It achieves an accuracy of
81% in detecting vulnerabilities. The approximate equality of macro
average results and weighted average results suggests that the
models perform well in classifying both vulnerable code and non-
vulnerable code.
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