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Abstract—Despite decades of effort in research and engi-
neering, integer overflows remain a severe threat to software
security. Many tools are developed to detect integer overflows at
runtime. However, the vast majority of them terminates program
execution when an integer overflow is detected. This essentially
causes denial-of-service, which is undesirable in many scenarios
in practice. We propose a recovery mechanism designed for
safe recovery from integer overflows. The recovery mechanism
detects integer overflows and rectifies the values involved in
arithmetic operations causing integer overflows so that it prevents
the occurrence of the integer overflows and enables the program
to continue execute safely. We have designed and developed a tool
called RIO that can automatically synthesize and instrument our
recovery mechanism into target programs. Our evaluation shows
that RIO can successfully synthesize and instrument the recovery
mechanism into programs containing real world vulnerabilities
and the instrumented recovery mechanism allows the programs
to recover safely in the face of exploits intending to trigger the
vulnerabilities.

Index Terms—System Recovery, Fault Recovery, Software
Reliability, Software Vulnerability, Integer Overflow, Program
Analysis, Static Taint Analysis.

I. INTRODUCTION

Integer overflows is one of the most common vulnerabili-
ties [1] and one of the top 25 dangerous software weakness [2].
They are often exploited by attackers to trigger software
faults such as buffer overflows and null-pointer dereference
to compromise computer systems or cause denial-of-service.

As it is crucial to address integer overflows, many tools have
been proposed to detect and fix integer overflows [3]-[14]. Be-
cause statically identifying integer overflows tend to produce
high false positives, a plethora of integer overflow detection
tools focus on runtime detection. They usually detect integer
overflows using standard tests on integer overflow conditions
that indicate whether an integer overflow occurred. On the
contrary, the main challenge of fixing integer overflows lies in
what to do when an integer overflow is detected. Most tools
simply terminate program execution or rely on developers to
specify a generic operation that should be executed when any
integer overflow occurs [3], [11]-[13].

One approach to address the challenge is to divert program
execution to error handling code when integer overflows occur.
Prior work has shown that existing error handling code in a
program can be automatically identified [15]. Its limitation is
that only 75.1% of the functions of target programs contain
error handling code that can be automatically identified. The
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rest of the functions either do not have any error handling code
or cannot be identified easily.

To address these limitations, we propose a recovery mecha-
nism that can enable programs to safely recover from integer
overflows. In the face of an input that is about to trigger
an integer overflow in an arithmetic operation, our recovery
mechanism rectifies the operands of the arithmetic operation
so that it not only prevents the occurrence of the integer
overflow but also enables the program to continue execute
safely, without losing program availability.

We have designed and implemented a software tool called
RIO. It uses static taint analysis to automatically identifies
arithmetic operations for which program input can cause
integer overflows, synthesizes the recovery mechanism, and
instruments the recovery mechanism into target programs.

Unlike prior work that recover from software faults via
an external program execution monitor that nullifies opera-
tions leading to software faults and thus incurs high runtime
overhead, RIO instruments target programs with lightweight
recovery mechanism to enable the programs to recover from
integer overflows.

In summary, we make the following contributions in this
paper:

e We present a novel recovery mechanism that enables
existing programs to recover safely from inputs intending
to trigger integer overflows.

o We describe the design and implementation of RIO, our
software tool for automatically synthesizing and instru-
menting the recovery mechanism into target programs.

o« We evaluates the effectiveness of RIO and the safety
of the recovery mechanism. RIO successfully synthe-
sizes and instruments the recovery mechanism for the
arithmetic operations involved in 8 of 10 real world
vulnerabilities. The recovery mechanism allows programs
to safely recover from exploits intending to trigger these
8 vulnerabilities.

The organization of the rest of this paper is as follows. Sec-
tion II discusses related work. Section III describes the attack
model. We illustrate an example usage of RIO in Section IV.
In Section V we describe our design and implementation.
Following that, we present our evaluation results in Section VII
and discussions in Section VI. We conclude in Section VIII.
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II. RELATED WORK
A. Recovering from Faults

Over the decades many different approaches have been
developed to provide fault recovery. A common approach is
to create checkpoints during program execution and rolls back
to a checkpoint when a fault is triggered, in order to restore a
system to the last-known good state [16]-[18]. Its drawback is
that both the creation of checkpoints and the rollback typically
incur high runtime overhead.

Another approach to maintains system functionality after
the occurrence of a fault is to undo the side-effects of the
operations triggering the fault [19]. However, it is challenging
to identify or design appropriate undo operations [20].

Other approaches discard fault-triggering operations and
manipulate program state in a way to allow a program to
continue executing safely [21]-[25].

These approaches generally require the use of an external
program execution monitor to sandbox the program execu-
tion after they change program state for fault recovery. As
an example, recovery shepherding uses an external program
execution monitor to recover from divide-by-zero and null-
dereference errors [23]. When a fault is detected, recovery
shepherding starts the program execution monitor to change
the program state and track the data affected by the change.
Until all the affected data are discarded by the program, it
uses error containment to prevent any of the affected data from
being written to the file system.

B. Detecting and Fixing Integer Overflows

A large body of work has been proposed to detect, mitigate,
or fix vulnerabilities, particularly integer overflows [3]-[14],
[26]-[29].

IntPatch automatically fixes Integer Overflow to Buffer
Overflow vulnerabilities in C/C++ programs at compile
time [11]. It utilizes type theory and static dataflow analysis to
identify potential vulnerabilities and then instruments runtime
checks on integer overflows.

IntScope performs symbolic execution and taint analysis on
binaries to detect the program paths that can propagate integer
overflows into exploitable vulnerabilities [6]. It symbolically
executes x86 binary code and explores every branch in a target
program when the branch is feasible. The symbolic execution
identifies integer overflows whose results can reach sensitive
points, including memory allocation, memory access, branch
statement, and program-specific points.

Using dynamic analysis, IntTracker detects Integer-
Overflow-to-Buffer-Overflow (I02BO) vulnerabilities in
C/C++ programs [12]. It aims to reduce the false positives in
detecting integer overflows by delaying the detection to the
locations where the result of an integer overflow will be used
for memory operations. By doing so, it will not report the
occurrence of an integer overflow if the result of the integer
overflow is never used for memory operations.

SIFT uses symbolic execution to learn symbolic conditions
on inputs to detect integer overflows [10]. Starting from critical

sites in a target program, including memory allocation and
block copy sites, SIFT uses backward static analysis to gener-
ate symbolic conditions that are conjunctions of functions on
input fields. A symbolic condition for a critical site denotes
how the value used at the critical site is derived from input
fields. Based on symbolic conditions, SIFT generate filters to
filter out inputs that will cause overflowed values being used
at critical sites.

SOAP rectifies inputs that could trigger integer overflows
into benign inputs [30]. It learns the constraints for benign
inputs by running target programs using benign test inputs. If
an input violates any of these constraints, SOAP rectifies the
content of the input so that the input satisfies the constraints.

Talos [15] and RVM [27] prevent vulnerabilities from being
exploited by instrumenting Security Workaround for Rapid
Response (SWRR) into target programs. Each SWRR safely
disables the execution of a vulnerable function by diverting
program execution to error handling code when a vulnerable
function is called, so that the vulnerability cannot be triggered.

ITII. ATTACK MODEL

In our attack model, an attacker tries to exploit an integer
overflow vulnerability in a program in order to hijack program
execution, gain unauthorized access to the computer running
the program, or cause the program to be offline, i.e. denial-
of-service attack. We assume that the attacker does not have
physical access to the computer, and does not have the priv-
ilege to terminate the execution of the program. The attacker
can access the program only by sending inputs to the program.

A. Hijacking Program Execution

The attacker can craft a malicious input to trigger an integer
overflow in the program and consequently causes a software
fault that can be exploited to divert program execution. For
example, an integer overflow can cause the program to allo-
cate a smaller-than-needed buffer and subsequently lead to a
buffer overflow that can be used to overwrite function return
address to a value supplied by the attacker for code injection
attack [31] or return-oriented-programming attack [32].

B. Unauthorized Access

An integer overflow in the program can be exploited by the
attacker to gain unauthorized access to sensitive data on the
computer, also called information disclosure. As an example,
a calculated value may be used as an index to access data,
but an integer overflow occurred in the calculation can make
the index points to protected data that is not supposed to be
accessed by the attacker [33].

C. Denial-of-Service

The input supplied by the attacker causes an integer over-
flow in the program execution and either causes the program
to terminate abnormally, e.g. fail an assertion, or triggers a
software fault, which cannot be used by the attacker to hijack
program execution or gain unauthorized access. As a result,
the program is offline and the service provided by the program
is no longer available.
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IV. RIO X

We design RIO to enable programs to recover from integer
overflows gracefully. In this section we illustrate how RIO
can be used for gocr, an optical character recognition (OCR)
program, to recover from a real-world integer overflow.

[<IEN o NV, RN UV I )

A. An Example Integer Overflow 9
10
11
12
13
14
15
16
17

As shown in Figure 1, function readpgm in gocr is in
charge of reading the content of an image file. The function
contains an integer multiplication at line 15 involving variable
nx and ny, which are the width and height of the image,
read from the image file at line 7 and 8 respectively. The
multiplication can cause an integer overflow.

TS . 18

The result of the multiplication is used as the size to allocate |q
a memory buffer by calling malloc. Function readpgm then 20
reads all the lines of the image into the buffer at line 16. At 2!
last, it passes the width and height of the image, back to its 53
caller via the pointer parameter p at lines 18-20. 24

Function otsu calculates an image intensity threshold by 2
. . . 26
analyzing the image data stored in the buffer allocated and ,;
filled by function readpgm. Its parameters dx and dy are 28
the image width and height returned from function readpgm. gg

To exploit the integer overflow, an attacker can craft an im- 3;
age file that containing a huge number, such as 1,073,741,825, 32
as the image height and number 4 as the image width. This will 3
cause an integer overflow at line 15 and thus allocate a smaller- 35
than-needed buffer. When function ot su tries to analyze the 36
image data in the buffer, the dereference of pointer np at line 37
32 will trigger a memory fault. We note that an attacker may
also craft an image file that triggers the same integer overflow
but causes a memory fault at line 16.

B. Recovery Mechanism

A user can enable a target program like gocr to defend
against such an attack by using RIO to instrument our recovery
mechanism into the code of the target program. The recovery
mechanism consists of two components, data rectification,
which nullifies the effect of an integer overflow, and error
containment, which prevents the data rectification from caus-
ing persistent data corruption.

For the example integer overflow, RIO will instruments lines
9-14 into function readpgm. Lines 9-12 correspond to data
rectification, while line 13 starts the error containment.

C. Data Rectification

Line 9 performs the same multiplication as line 15 so that
line 10 can check whether an integer overflow occurred during
the multiplication. If an integer overflow occurred, line 12
rectifies variables involved in the multiplication, nx and ny,
to zeroes and line 13 calls an API function in RIO’s runtime
library to enable error containment.

The rectification of variables involved in the multiplication
will has the effect of bypassing the pointer dereference at line
32 in function ot su, because it nullifies the image width and
height, which are passed to variable dx and dy that dictate

void readpgm(char sxname, pix* p, ...){
FILE =f1;
int nx, ny, i, k;
unsigned char =pic;
fl1 = fopen(name, "rb”);
nx = read_int(fl);
ny = read_int(fl);
+ int size = nx % ny;
+ if (nx != 0 && size / nx != ny) {
+ log_message (" Integer.overflow._.occurred!”);
+ nx = ny = 0;
+ RIO_start_recovery () ;
+
pic=malloc (nx * ny);
fread (pic, nx, ny, fl);
fclose (fl);
p—>p=pic;
p—>Xx=nx;
p—>y=ny;
}

int otsu(unsigned char =image, int dx, int dy) {
unsigned char =np;
int i, j, k;
int ihist[256];

for (i 0; i < dy; i+=k) {
np = &image[i * cols];
for (j 0; j < dx; j++) {
ihist[=np]++;

}

Fig. 1. An integer overflow vulnerability in gocr, adapted from CVE-2005-
1141. Lines prefixed by "+ are instrumented by RIO for recovery from the
integer overflow.

the execution of line 32. As a result, no software fault will
happen in the face of the integer overflow.

RIO disables the error containment when a recovery fin-
ishes. It considers a recovery finishes when the program
execution reaches an annotated program location.

D. Error Containment

An acute reader may have the concern that it is possible for
the data rectification to cause unexpected program behaviors,
particularly corrupting persistent data. To address this concern,
RIO uses error containment to prevent any data affected by the
rectification from being written to the file system.

RIO intercepts all system calls that could send data out of
the running process of a target program. Similar to [23], it
disallows writes to files. A user can also configure RIO to log
the data intended for the skipped file writes during the error
containment. The logged data can then be examined by an
user and committed to the file system with user approval.

V. DESIGN AND IMPLEMENTATION
A. Overview

RIO protects a target program from integer overflows by
generating and instrumenting our integer overflow recovery
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mechanism into the target program. The recovery mechanism
includes data rectification code to rectify values involved in
integer overflows and error containment code to ensure that
the data rectification will not lead to persistent data corruption.

As shown in Figure 2, RIO takes a target program as input,
generates and instruments the recovery mechanism into the
target program in three phases.

The first phase analyzes the code of target program and
outputs a list of arithmetic operation locations and the list
of data dependent on the values involved in each arithmetic
operation, called influenced data. It consists of one step:
identifying arithmetic operations.

The second phase takes the output from the first phase as
input and outputs synthesized data rectification code for each
arithmetic operation identified in the first phase. This phase
has one step: synthesizing data rectification code.

The third phase takes the data rectification code synthesized
in the second phase as input. It instruments both the data
rectification code and the error containment code into the
target program. It includes two steps: instrumenting data
rectification code and instrumenting error containment code.

We have implemented a prototype of RIO for C/C++
programs. Our implementation is based on LLVM [34], a
popular compiler infrastructure.

B. Identifying Arithmetic Operations

RIO identifies seven types of arithmetic operations in a
target program. These arithmetic operations and their corre-
sponding overflow conditions are listed in Table I.

We focus on arithmetic operations whose operands are
derived from user inputs, because user inputs may trigger
integer overflows in them. RIO uses static taint analysis [9] to
identify these arithmetic operations.

Initially the static taint analysis associates a taint with user
input data. It then propagates the taint to instructions and
other data dependent on user input data by following the data
dependency in the target program recursively.

RIO adds each tainted arithmetic operation into a list
of identified arithmetic operations. The operands for these
arithmetic operations are deemed as derived from user input.

For the code in Figure 1, the static taint analysis associates
an initial taint with £1, the file descriptor for a user input
file. Because function read_int returns an integer read from
£1, the taint is propagated to nx and ny, and then to the
multiplication at line 15 as nx and ny are the operands for
the multiplication. Consequently this multiplication is added
to the list of identified arithmetic operations.

The output of this step is the list of the identified arithmetic
operations. The second phase will synthesize data rectification
code for each arithmetic operation in the list.

C. Synthesizing Data Rectification Code

This step takes the list of identified arithmetic operations as
input, and outputs synthesized data rectification code for each
arithmetic operation in the list.

Instrumenting
Data-Rectification

Identifying
oo Arithmetic
Operations Code

Synthesizing
Data-Rectification
Code

Target
Program

Instrumenting

Error Containment
Code

Fig. 2. Workflow of RIO: each rounded rectangle represents a step in RIO;
dotted lines denote input data; solid lines denote the order of steps.

TABLE 1
OVERFLOW CONDITION FOR INTEGER OPERATIONS.

Type Arithmetic Operation | Overflow Condition

Signed c=a+b (a>0Ab>0Ac<a)V
(a<O0Ab<OAC>a)

Unsigned | c=a+b c<a

Signed c=a—1b (a<O0AD>0ACc>0)V
(a>0Ab<0AC<O)

Unsigned | c=a—b a<b

Signed c=axb a#O0ANc/a#b

Unsigned | c=ax*b a#0ANc/a#b

c=a<kb c>b#a

The data rectification code is in charge of testing whether
an integer overflow occurred and rectifying relevant values if
that is the case. It also logs a message indicating that data
rectification has taken place so that the user is aware of that.
Lastly it enables the error containment after rectifying values.

To determine whether an integer overflow occurred for the
corresponding arithmetic operations, the data rectification code
checks the overflow condition listed in Table I, based on the
type of the arithmetic operation.

RIO clones the arithmetic operation and checks the cloned
arithmetic operation before the identified arithmetic operation,
rather than doing the check after the identified arithmetic
operation. This is because we would like to make use of
the identified arithmetic operation after rectifying the involved
values. For example, RIO makes a clone of the multiplication
at line 15 and places it at line 9, in Figure 1.

If check uses an overflow condition requiring the use of
the result of an arithmetic operation, RIO also creates a new
variable to hold the result of the cloned arithmetic operation,
such as the new variable size at line 9.

One challenge for our design is to decide what values should
the used for data rectification. For integer overflows in real
world programs, we find that the result of the arithmetic
operation and the involved values are often used as either
a loop upper bound or a length argument used by functions
manipulating character strings or similar types of data.

Mlustrated in Figure 3, the subtraction at line 9 can cause
an integer overflow and the result of the subtraction is passed
as the length argument to copy a string. While in the code in
Figure 1, the values involved in the multiplication at line 15
are used as loop upper bounds at line 29 and 31 respectively.

This observation makes us consider using zero as the result
of an arithmetic operation in which an integer overflow will
occur. In other words, the data rectification code should rectify
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lhandle_t http_response_prepare(connection sxcon) {

3 size_t

plen = (size_t)(qstr — pstr);
4 size_t rlen = strlen(con—->request.uri);
S5+ if (plen > rlen) {
6+ log_message (" Integer.Overflow.occurred!”);
7+ rlen = 1; plen = 0;
8+
9 strncpy (con—>query , qstr + 1, rlen — plen - 1);
10
11}

Fig. 3. The result of an arithmetic operation is used in a string manipulation
function, adapted from CVE-2019-11072 in 1ighttpd, a popular web server.
Lines prefixed by '+ are instrumented by RIO for integer overflow recovery.

the values involved in an arithmetic operation in a way so that
the original arithmetic operation will produce a result of zero.

RIO uses a Satisfiability Modulo Theory (SMT) solver to
find out how to rectify operands involved in an arithmetic
operation. It creates a formula based on the arithmetic opera-
tion and lets the SMT solver produce operand values that can
satisfy the expected result value.

As an example, for the subtraction at line 9 in Figure 3,
RIO passes the formula rlen —plen—1==0Arlen >=
OAplen >= 0 to the SMT solver Z3 and receives a solution
(rlen==1,plen ==0).

One potential issue with this choice is that a division by zero
fault can be triggered if the value rectified to zero happens to
be used as a divisor after the rectification. To avoid this issue,
RIO statically checks whether the result or operands of the
arithmetic operation is used as a divisor. If so, RIO will not
synthesize data rectification code for the arithmetic operation.

RIO cannot synthesize data rectification code in two cases.
First, it cannot synthesize data rectification code when the
arithmetic operation involves function calls. If data rectifica-
tion code only changes the return value of the function call
without changing the value of the arguments passed to the
function call, the program may be left in an inconsistent state.

Second, it cannot synthesize data rectification code if the
values to be rectified cannot be propagated to affect its
dependent data. Rectifying the values without rectifying their
dependency can leave the program in an inconsistent state.

This step produces the data rectification code that RIO suc-
cessfully synthesizes for each identified arithmetic operation.

D. Instrumenting Data Rectification Code

Taking the synthesized data rectification code and the lo-
cations of the corresponding arithmetic operations, this step
instruments the data rectification code into a target program.

It iterates through each arithmetic operation, and instru-
ments the data rectification code corresponding to the arith-
metic operation right before the program location of the
arithmetic operation.

E. Instrumenting Error Containment Code

The error containment code consists of a runtime library
and the code to initialize the runtime library and to enable or

disable the error containment. This step instruments both of
them into a target program.

The runtime library is implemented as a shared library for
intercepting target program’s output to the file system via
the write system call. When error containment is enabled,
it examines the filename associated with the file descriptor
passed to any call to write to determine whether the call
intends to output to a real file in the file system. If that is the
case, the call will be ignored so that no output will be made
into the file system during error containment.

The runtime library also provides a set of API functions
for initializing the runtime library, and enabling or disabling
error containment. To initialize the runtime library when the
program starts running, RIO instruments a call to the runtime
library’s initialization API function into the entry point of the
target program, such as the main function.

The code to disable the error containment is instrumented at
an annotated program location in the target program, typically
the location where the target program receives a new user
input, such as a new network request or new user input file.
As a result, the error containment is disabled when a new input
is received by the target program.

VI. DISCUSSIONS

RIO rectifies values involved in the arithmetic operations
causing integer overflows to make the arithmetic operation
produces a zero. Our evaluation shows that the rectification
is safe. While it is possible that the rectification might cause
errors in certain target programs, prior work [21], [23] have
also shown that it is safe to rectify fault-related values to zeros.

Our prototype of RIO is designed to provide safe recovery
for every arithmetic operation whose operands come from user
inputs. This strategy works on the LLVM bitcode compiled
from the source code and offers full-fledged protection, but
the protected programs will incur the runtime overhead for
checking integer overflows for these operations.

It should be noted that our recovery mechanism can be
instrumented directly into the binary code of a deployed
program as a temporary fine-grained patch against exploits to
integer overflow vulnerabilities, before vulnerability patches
are applied. We plan to explore this patch-based strategy by
adopting source-code-to-binary-code matching [35].

VII. EVALUATION

In this section, we evaluate the safety of the recovery
mechanism generated and instrumented by RIO. We first
present the overall evaluation results and then use case studies
to discuss the details for each evaluated case.

All our evaluations are conducted on a workstation equipped
with an 3.60GHz Intel Core i7-7700 CPU and 16GB RAM.
The workstation runs 64-bit Ubuntu 18.04 desktop operating
system on a 2TB 7200 RPM SATA hard drive.

A. Recovery Safety

We use real world integer overflow vulnerabilities in pop-
ular Linux programs for our evaluation. The majority of
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the vulnerabilities are evaluated in our prior work [9]. In
total, we evaluate 10 integer overflow vulnerabilities from 8
different programs including an IRC server, a web server, a
programming language interpreter, an OCR program, and four
image processing libraries or tools. Table II lists the name,
type, and the number of source code lines for each program.
In total the programs have 880,677 lines of source code.

TABLE II
BENCHMARK PROGRAMS.
Program | Type SLOC
ngircd IRC server 14,660
lighttpd web server 61,234
php programming language interpreter | 556,363
gocr OCR tool 30,654
fig2dev image processing tool 41,834
libftiff image processing library 57,415
exiv2 image processing library 84,490
libsixel image processing library 34,027

Table III lists the integer overflow vulnerabilities. The
arithmetic operations involved in the vulnerabilities consist of
2 additions, 3 subtractions, and 5 multiplications. For each
vulnerability, we first evaluate whether RIO can synthesize
and instrument the recovery mechanism into the program in
which the vulnerability exists. Then we run a proof-of-concept
exploit to trigger each integer overflow and verify whether the
instrumented recovery mechanism can allow the program to
safely recover from the integer overflow.

RIO successfully synthesizes data rectification code for 80%
of the vulnerabilities. For 2 of the vulnerabilities, RIO is
unable to synthesize data rectification code.

With the recovery mechanism generated and instrumented
by RIO, the programs containing these vulnerabilities no
longer raise software faults when processing the exploits
intending to trigger the vulnerabilities.

B. Case Studies

CVE-2005-0199. ngircd is an IRC server. The
integer overflow vulnerability involves a subtraction:
sizeof (TheMask) —strlen(at) —4. RIO is unable to
synthesize data rectification code for the subtraction because
it involves a function call to strlen.

TABLE 111
RECOVERY FOR INTEGER OVERFLOW VULNERABILITIES. COLUMN
“ARITH.” DENOTES THE TYPE OF EACH ARITHMETIC OPERATION.

CVE# Program | Arith. | Rectified? | Safety?
2005-0199 ngircd - N N/A
2005-1141 gocr * Y Y
2006-2025 libftiff + Y Y
2006-4812 php * N N/A
2007-1001 php * Y Y
2019-11072 | lighttpd Y Y
2019-13109 | exiv2 - Y Y
2019-13110 | exiv2 + Y Y
2019-19746 | fig2dev * Y Y
2019-20205 | libsixel * Y Y

CVE-2005-1141. This is an integer overflow vulnerability
in gocr, an OCR tool. The integer overflow occurs in a
multiplication: nx * ny. RIO generates data rectification code
to set both nx and ny to zeroes.

CVE-2006-2025. This integer overflow vulnerability is in
libtiff, an popular image processing library. The involved
arithmetic operation is an addition: dir->tdir_offset +
cc. The data rectification synthesized by RIO sets both
dir->tdir_offset and cc to zeroes.

CVE-2006-4812. This is an integer overflow vulnerability in
php, the official PHP programming language interpreter. The
integer overflow involves a multiplication: size * nmemb.
RIO cannot synthesize data rectification code for it, because
the two variables, size and nmemb, are function parameters
passed by value. As a result, the rectification on them cannot
be propagated to any value dependent on the arguments
corresponding to them.

CVE-2007-1001. This integer overflow vulnerability is also
in php. It involves a multiplication: wbmp->width =
wbmp—->height. RIO synthesizes and instruments data rec-
tification code to set both variables to zeroes.

CVE-2019-11072. lighttpd, a widely-used web server,
contains the vulnerability. A subtraction, rlen — plen — 1
, can cause the integer overflow. The data rectification code
synthesized by RIO sets rlen to 1 and plen to zero so that
the result of the subtraction is zero.

CVE-2019-13109. exiv2 is an image processing library
containing the vulnerability, which involves a subtrac-
tion: chunkLength — iccOffset. For this vulnerabil-
ity, RIO synthesize data rectification code that sets both
chunkLength and iccOffset to zero.

CVE-2019-13110. This is another vulnerability in exiv2.
It involves an addition: o + 2. The data rectification code
synthesized by RIO sets o to zero.

CVE-2019-19746. This vulnerability is in an image processing
tool called fig2dev. The vulnerability involves a multipli-
cation: 2 x type. RIO synthesizes data rectification code to
set type to zero.

CVE-2019-20205. libsixel, an image processing li-
brary, has this vulnerability, which involves a multiplication:
width*xheight *x 3. RIO synthesizes data rectification code
to set both width and height to zero.

VIII. CONCLUSION

In this paper we propose a novel recovery mechanism for
arithmetic operations that can cause integer overflows. The
recovery mechanism rectifies operands of arithmetic opera-
tions that can cause integer overflows in order to nullify
the effect of the integer overflows. We have implemented a
tool called RIO to automatically synthesize and instrument
our recovery mechanism into target programs. We evaluate
RIO on real world integer overflow vulnerabilities and it
successfully synthesizes the recovery mechanism for 80% of
them. The recovery mechanism synthesized by RIO enables
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the programs to safely recover from exploits that trigger these
integer overflows.
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