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ABSTRACT
Modern smartphone operating systems (OSs) have been de-
veloped with a greater emphasis on security and protecting
privacy. One of the mechanisms these systems use to pro-
tect users is a permission system, which requires developers
to declare what sensitive resources their applications will
use, has users agree with this request when they install the
application and constrains the application to the requested
resources during runtime. As these permission systems be-
come more common, questions have risen about their design
and implementation. In this paper, we perform an analysis
of the permission system of the Android smartphone OS in
an attempt to begin answering some of these questions. Be-
cause the documentation of Android’s permission system is
incomplete and because we wanted to be able to analyze sev-
eral versions of Android, we developed PScout, a tool that
extracts the permission specification from the Android OS
source code using static analysis. PScout overcomes several
challenges, such as scalability due to Android’s 3.4 million
line code base, accounting for permission enforcement across
processes due to Android’s use of IPC, and abstracting An-
droid’s diverse permission checking mechanisms into a single
primitive for analysis.

We use PScout to analyze 4 versions of Android spanning
version 2.2 up to the recently released Android 4.0. Our
main findings are that while Android has over 75 permis-
sions, there is little redundancy in the permission specifica-
tion. However, if applications could be constrained to only
use documented APIs, then about 22% of the non-system
permissions are actually unnecessary. Finally, we find that
a trade-off exists between enabling least-privilege security
with fine-grained permissions and maintaining stability of
the permission specification as the Android OS evolves.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls, Infor-
mation flow controls
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1. INTRODUCTION
One of the distinguishing and desirable characteristics of

smartphones over traditional feature phones is that they are
capable of running applications written by third party devel-
opers. This capability, combined with their highly personal
nature, has raised concerns about the threat that smart-
phones pose to the privacy and security of their users. To
address these concerns, many smartphone operating systems
(OS) implement some sort of permission system to control
access by third party applications to sensitive resources, such
as the user’s contact list or the phone’s microphone [1]1.

Because of the rapidly growing number of smartphone
users and the wide use of permission systems on these plat-
forms, it is important that we gain a better understanding
of the implementation and design of smartphone permission
systems. In this paper, we take some first steps towards
answering some of the key questions that have arisen about
the permission system of Android, which is the most widely
deployed smartphone OS at the time of writing. In particu-
lar:

• Is the plethora of permissions offered by Android (79
permissions available to third party applications as
of Android 4.0) useful or would a smaller number of
coarser permissions provide an equal amount of pro-
tection [1, 3]?

• Android has many undocumented APIs that are used
by third party applications [14]. Do many of these
undocumented APIs require permissions and how com-
monly do third party applications use such undocume-
nted APIs?

• The large number of permissions and APIs in Android
suggests that the permission specification for Android
will be very complicated. How complex is the speci-
fication and how heavily interconnected are different
API calls with different permissions?

1The notable exception is Apple’s iOS, which relies on man-
ual vetting of applications. Manual vetting may protect
against malicious applications, but does not prevent priv-
ilege escalation if a benign application is compromised.



• Android has gone through several major revisions and
now has one of the more mature permission systems
among smartphone OSs. How has it evolved over time
and what might newer smartphone OSs such as Win-
dows Phone 7 and Boot to Gecko (B2G) learn from
this?

To perform such a study, we need a specification for the
Android permission system that lists the permission require-
ments for every API call. More importantly, we also need
permission specifications for more than one version of An-
droid. Unfortunately, Google does not provide such a spec-
ification as the Android permission documentation is very
incomplete [21]. The Stowaway project currently lists the
permissions required for over 1,200 documented and un-
documented API calls for Android 2.2 [14]. To produce
valid results, Stowaway requires manually specifying some
API input arguments and sequences, which unfortunately,
must be re-specified for other versions of Android. Using a
slightly different permission specification extraction tool for
each Android version will introduce noise into any compar-
isons drawn across versions. The amount of manual effort
required makes it infeasible to reuse Stowaway to generate
specifications for multiple Android versions. In addition, be-
cause Stowaway relies on feedback directed API fuzzing to
extract a specification, its specification is incomplete – Stow-
away can only exercise API calls it can find, and of those, it
is only able to successfully execute 85% of them.

To perform our study, we needed a method of extracting
the permission specification from Android that is applica-
ble to any Android version without modification. The tool
should be able to capture permission requirement for every
documented and undocumented API calls. To accomplish
this, we implemented a static analysis tool called PScout
(short for Permission Scout), which performs a reachability
analysis between API calls and permission checks to pro-
duce a specification that lists the permissions that every
Android API call requires. Because PScout examines the
entire source code implementing the Android API, it can
identify every Android API that can be called and produce
a mapping to the permissions that the API call may need.
An added benefit of using reachability is that PScout also ex-
tracts information about the execution path an API takes to
reach a permission check, which we also use in our analysis.
PScout relies only on non-version specific Android functions
and components such as Binder, Intents, Content Providers
and permission check functions, allowing it be applied with-
out modification to any version of Android.

We make the following contributions in this paper:

• We design and implement PScout, a version-indepen-
dent static analysis tool that extracts a permission
specification from Android that is more complete than
existing specifications. PScout’s analysis finds over
17 thousand mappings between API calls and permis-
sions, which is considerably more than that found by
Stowaway.

• We measure the amount of imprecision introduced by
PScout’s scalable static analysis using an extensive
evaluation methodology that compares against appli-
cation developers. However, since developers them-
selves make errors in specifying permissions, we follow

up with an automated application UI fuzzer that val-
idates the permission mapping by exhaustively trying
to find flaws in it.

• We analyze the permission system of Android 4.0 as
well as how it has changed across 4 versions ranging
from Android 2.2 to 4.0. Our analysis shows that while
there is little redundancy in the permission specifica-
tion, about 22% of the non-system permissions can be
hidden if applications only use documented APIs. We
also find that while the Android permission specifi-
cation is very broad, it is not very heavily intercon-
nected. More than 80% of API calls that may require
permissions check for at most one permission and 75%
of permissions are checked by fewer than 20 API calls.
Finally, we find that across versions the amount of pro-
tection from permissions has remained relatively con-
stant to the increase in code size and functionality of
Android.

We begin with background on the Android OS in Sec-
tion 2. Readers familiar with Android may wish to start
at Section 3, which describes PScout’s static analysis and
method for extracting permission specification. Section 4
evaluates the completeness and soundness of PScout’s ex-
tracted permission specification. Section 5 describes our
analysis of the permission specifications of 4 Android ver-
sions. We discuss related work in Section 6 and conclude in
Section 7.

2. BACKGROUND
Android is a middleware OS implemented above a cus-

tomized Linux kernel. Android applications and system ser-
vices are all implemented in Java and make cross-domain
calls via a set of documented APIs exported by the An-
droid system services. We define the “Android Framework”,
as the set of Java libraries and system services that imple-
ment these Android APIs. However, rather than restricting
themselves to the documented Android APIs, third party
developers may use Java reflection or examine the source
code of Android to obtain references to any Java method
and use them in their code. We and others [14] have found
that applications do in fact use undocumented APIs, so we
include undocumented APIs in our analysis as well.

Android is characterized by the heavy use of IPC both
within applications and as a means of communication be-
tween applications and components of the OS. In addition to
traditional IPC mechanisms like shared memory and sockets,
Android introduces two Android-specific IPC mechanisms.
The first are Intents, which is a uni-direction message with
an arbitrary action string that can be broadcasted to all
applications or sent to a specific application. Permissions
may be used to both restrict who may receive an intent sent
by an application, or to restrict who may send intents to a
particular application.

Android’s second IPC mechanism is Binder, which im-
plements Remote Procedure Calls (RPC). Once a remote
interface is properly defined in an Android Interface Defi-
nition Language (AIDL) file, it can be called just like any
other local method. System services accept asynchronous
Binder communication through the Message Handler class,
which wraps the Binder interface.

The Android framework also includes a set of system com-
ponents. One type of component is called a content provider,



which implements databases that provide persistent data
storage for other application components. Applications spec-
ify which content provider they are addressing using Uniform
Resource Identifiers (URI) that start with content://. Con-
tent providers may require that applications hold certain
permissions to access them.

To access sensitive resources, users must grant the re-
quested permissions to applications. There are two ma-
jor types of permissions in Android: “Signature or system
permissions”, which are only available to privileged services
and content providers, and regular permissions, which are
available to all applications. Since third party applications
can only request regular permissions, we focus on extract-
ing a specification for only the non-system permissions in
our analysis. Android developers manually declare all re-
quired permissions in the Android Manifest file (Android-
Manifest.xml). During installation, the Package Manager
Service, parses the Manifest file into a permission list. When-
ever the application tries to access a privileged system re-
source, the Android framework will query Package Manager
Service to check if the application has the necessary permis-
sion to do so.

3. PSCOUT DESIGN AND IMPLEMENTA-
TION

One of the challenges for PScout is the sheer size of the
Android framework. Table 1 (in Section 5) gives some statis-
tics across the different Android versions to give the reader
an idea of the scale of the framework. Because of this,
PScout’s design is oriented towards making it scalable, with
only selective use of more detailed analysis to minimize loss
of precision.

PScout produces a permission specification that is a set of
mappings between elements in the set of API calls and the
set of permissions that third party applications may request.
Because the mapping is produced between an API call and
a permission, it is necessarily an approximation – an API
may not require a particular permission in every context
it is invoked. In such cases, PScout returns a conservative
result – a mapping between an API call and a permission
is included in the specification if the permission is required
on some execution of the API. In cases where PScout finds
that an API call may need more than one permission, it
assumes all permissions will be required when in fact only a
subset of those permissions may be needed on any particular
invocation of the API.

PScout leverages the Soot [20] Java bytecode analysis fra-
mework to perform static analysis. The extraction of the
permission specification from the Android framework has
three phases. First, PScout identifies all the permission
checks in the Android framework and labels them with the
permission that is being checked. Then, it builds a call
graph over the entire Android framework including IPCs and
RPCs. Finally, it performs a backwards reachability traver-
sal over the graph to identify all API calls that could reach
a particular permission check. In some cases, the reacha-
bility traversal may find additional permission checks that
were missed in the first phase. As a result, the reachability
analysis is repeated until the number of permission checks
converges. Figure 1 gives a high level summary of the analy-
sis flow in PScout and each phase is discussed in more detail
in the following Sections 3.1, 3.2 and 3.3.

Extract Android Source Information with Soot 

Identify Permission Checks: 
i) Explicit; ii) Intents; 
iii) Content Providers 

(Sec. 3.1) 

Generate Call Graph (Sec. 3.2) 

Refine Call Graph with 
IPC/RPC edges (Sec. 3.2) 

Perform Backward Reachability Analysis (Sec. 3.3) 

Found New 
Permission Check? 

Yes 

API Calls to Permission 
Mapping  

No 

Figure 1: PScout Analysis Flow.

PScout extracts a permission specification from the An-
droid 4.0 Framework on an Intel Core 2 Duo 2.53 GHz CPU
with 4 GB of memory in 33 hours. The vast majority of
time is spent in two iterations of using Soot to extract in-
formation needed by PScout from the bytecode. Since each
bytecode file is analyzed independently, the total Soot anal-
ysis time scales linearly with the number of classes and each
file takes about 4 seconds to process. The rest of PScout’s
analysis completes within 30 minutes.

We restrict PScout’s analysis to only the non-system per-
missions implemented in the Android Open Source Project
(AOSP) that third party applications may hold. PScout’s
analysis only runs on the Android Framework where the
vast majority of permissions are checked in Java. PScout
cannot find permission mappings for the four permissions
that are checked in native C/C++ code. As a result, we
handle these permissions by manually inspecting the source
code where these permission strings are used. In addition
to being enforced in the Java framework, some permissions
are also enforced by the kernel using Group IDs assigned
at installation time. PScout only captures the enforcement
done in the framework for these permissions and currently
does not capture the enforcement done in the kernel.

3.1 Permission Check Identification
Android has three types of operations that will succeed or

fail depending on the permissions held by an application: (1)
an explicit call to checkPermission function that checks for
the presence of a permission, (2) methods involving Intents
and (3) methods involving Content Providers. We abstract
each of these into a permission check that indicates that a
certain permission must be held at that point by the ap-
plication. We describe how we abstract each of Android’s
permission check mechanisms below.

Explicit Functions: Permissions in Android appear as
string literals in the framework source code and values of the
permissions strings are documented by Google. The strings
are passed to the checkPermission function along with the
application’s user ID (UID) and the function checks if an
application with the UID holds the specified permission.

The first step of identifying this type of permission check is
to find all instances of permission string literals in the frame-
work source. In most cases, these are passed directly to a



checkPermission function, which PScout then abstracts as
a permission check. However, in some cases, the permission
string is passed to a function that is not a checkPermis-

sion function. In these cases, PScout must determine if this
string is eventually passed to a checkPermission function or
not. To do this, PScout uses Soot’s def-use analysis to find
all the uses of the string. If any of the uses is a checkPer-

mission function or a permission wrapper function, PScout
abstracts the function where the string literal appears as a
permission check. If no checkPermission function appears
in any of the uses of the literal, then PScout checks if it is
an Intent function, which we discuss below.

Finally, some functions use a permission string without
invoking a checkPermission function or an Intent function.
There were a few instances of such functions which we in-
spected manually. We found that none of these are per-
mission checks. For example, a permission string is used to
query whether the permission is listed for a particular ser-
vice; two permissions are implicitly added to applications
developed for older versions of the Android SDK for com-
patibility and a permission string is used to set an internal
flag in a class.

Intents: Sending and receiving of Intents may require
permissions. This requirement can be expressed in two ways.
First, a requirement to hold a permission to send or receive
an Intent can be specified in the Manifest file. PScout ex-
tracts the Intent action strings associated with each permis-
sion from the Manifest file. Second, permission to send or
receive an Intent can be expressed programmatically when
the method to send or receive an Intent is called. To send
an Intent, an application may call sendBroadcast with an
optional permission string that specifies that the receiver of
the Intent must hold that permission. Similarly, to receive
Intents, an application may call registerReceiver with an
optional permission string that specifies that the sender of
the Intent must hold that permission. Using Soot, an intra-
procedural backward flow analysis is performed on the meth-
ods that call these two APIs and their variants to extract
the permission parameter and the action string assigned to
the Intent parameter. By extracting information from the
Manifest file and invocations of sendBroadcast and reg-

isterReceiver, PScout builds a global mapping between
permissions and the Intent action strings.

Since this mapping tells PScout which Intent action strings
require permissions to send or receive, PScout abstracts any
send or registration to receive such an Intent as a permis-
sion check. The type of permission that is being checked
is computed by translating the action string of the Intent
being sent or received into an Android permission.

Content Providers: Methods that implicitly access a
content provider protected by a permission are categorized
as content provider permission checks. To access a content
provider, an URI object designating the recipient content
provider is passed to a ContentResolver class, which then
provides a reference to the content provider targeted by the
URI object.

Our handling of content provider permission checks is sim-
ilar to the way we handle Intent permission checks. PScout
first constructs a mapping of content provider URIs to per-
mission strings. Each content provider declares the permis-
sions required to read and write to it in its Manifest file, so
PScout parses the Manifest file to extract this information.
It is also possible that the content provider programmati-

cally checks the permissions of the caller. In these cases,
PScout uses all previous identified permission checks and
performs a backward reachability analysis to see if any con-
tent provider access methods can reach one of those permis-
sion checks. If so, PScout then extracts the URI associated
with the content provider and maps that to the permission
being checked. When this phase is completed, PScout has a
mapping between content provider URIs and permissions.

Finally, to identify all actions on content providers that
require permissions, PScout identifies all instances where a
content provider URI is passed to a content provider access
method. If the URI has a permission associated with it in
the mapping, the access method is abstracted into a per-
mission check. As with the checkPermission functions, the
URI may be manipulated symbolically and passed through
several variables before being passed to a content provider
method. Thus, PScout again uses Soot’s backward flow
analysis to determine what the content of the URI parame-
ter is when the content provider access method is called.

3.2 Call Graph Generation
To generate the global call graph, PScout first generates

a set of standard call graphs for each Android framework
component. PScout then combines these into a single call
graph by adding edges for RPCs that occur between Android
components, and then further incorporates Message Handler
IPCs into the graph. Message Handlers often have high
fan-in/fan-out functions so PScout refines them using flow-
sensitive analysis as they are added to the call graph to
reduce the number of infeasible paths.

PScout begins with all classes in the Android framework
including application and system level classes. In this phase,
PScout only uses Soot to extract the class hierarchy for each
class, a list of methods invoked by each method and the def-
use information mentioned above. PScout then generates
its call graph from this information using Class Hierarchy
Analysis [10], which uses the following rules: (1) a virtual
call to a class can potentially targets all its subclasses; (2)
an interface call can be resolved to call any class that imple-
ments the interface and its subinterfaces; and (3) the target
method of each subclass is the closest ancestor that imple-
ments the method.

Next, PScout adds execution flows across IPCs and RPCs
into its call graph. IPCs and RPCs tend to use generic
functions to marshal and send arguments across process
boundaries, so we must refine with flow-sensitive analysis
to avoid too much imprecision. In Android, all RPCs flow
through Android’s Binder class. A näıve call graph anal-
ysis of the Binder class would give a result that any RPC
stub could flow to any RPC handler and create many infea-
sible paths. To refine these edges, PScout takes advantage
of the fact that Android uses the Android Interface Defini-
tion Language (AIDL) to automatically generate stubs and
interfaces for all RPCs. By parsing the AIDL files that de-
scribe each RPC interface, PScout can add edges between
the corresponding interface and stub functions of each RPC.

PScout also adds Message Handlers IPCs to the call graph.
Similar to the Binder class described above, sending of Mes-
sage Handler IPCs uses a generic Handler class in Android
which would also result in many infeasible paths if handled
näıvely. To send messages to a Message Handler class, the
senders must obtain a reference to the Message Handler ob-
ject. PScout performs static analysis to determine the class
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Figure 2: A reachability path starts from a permis-
sion check in the system processes. Not all permis-
sions can reach a documented API, meaning that
some permission checks can only be reached from
undocumented APIs.

name of the Message Handler object, which can be used to
link the method sending the message to the method receiv-
ing the message.

In addition to linking the senders and receivers of mes-
sages, PScout also performs simple flow-sensitive analysis
for these IPCs. A large number of message handlers will
use an input passed to them by the sender to index into
a table of handler functions and call the indexed function.
PScout performs intra-procedural backward flow analysis on
the sender to obtain all possible values the index may take.
The call graph is then refined to only include edges from
that call site to the specific functions that can be invoked
by the receiver in its lookup table.

3.3 Reachability Analysis
Finally, PScout performs a backward reachability analy-

sis starting from the permission checks on the generated call
graph. PScout creates a mapping for every method that
can be reached via a path from a permission check. How-
ever, not every method is an API that can be called by a
third party application – permission protected resources typ-
ically reside in system services, which can only be reached
by third party applications via an RPC or through IPCs
using intents. Thus, any path from a permssion check that
does not cross a process boundary is filtered from PScout’s
specification. Figure 2 shows an example of a path identified
by the reachability analysis.

The backward reachability analysis continues until one of
three stopping conditions is met. First, any calls to check-

Permission and its wrappers always succeed if they are be-
tween calls to clearCallingIdentity and restoreCalling-

Identity because these functions temporarily set the UID
to the system services. As a result, any call path that passes
through a function called between these two functions will
always pass a permission check. Thus, it is not necessary to
perform any reachability analysis beyond one of these points
and any method called between the clearCallingIdentity

and restoreCallingIdentity functions is a stopping point.
Second, access to a content provider is made with a vir-

tual call to the generic ContentProvider class. PScout stops
reachability traversal when it reaches a class or subclass of
ContentProvider. At this point, PScout infers the URI
string of the content provider and associates that URI with
the permission of the permission check where the reachabil-
ity analysis started. Thus, access to the ContentProvider

found on the reachability path is abstracted to a content
provider permission check and PScout iterates the reacha-
bility analysis until it converges.

Finally, documented APIs often have a generic parent
class that is called by many other methods. As a result,
once a documented API is reached, calls to its parent class
methods are excluded from the analysis.

4. EVALUATION
Before we rely on the specification extracted by PScout,

we wish to evaluate the accuracy of the permission spec-
ification by measuring the completeness and soundness of
the mapping produced by PScout. We define completeness
as the fraction of mappings that PScout finds over the to-
tal number of mappings that exist. We define soundness as
the fraction of correct mappings over the total number of
mappings found by PScout, where a correct mapping is a
mapping between an API call and a permission such that
there exists some invocation of that API requiring the per-
mission. The opposite of a correct mapping is an incorrect
mapping, which is a mapping between an API and a permis-
sion extracted by PScout where no invocation of that API
could possibly require the mapped permission. Incorrect
mappings can occur because PScout uses path-insensitive
analysis and thus can include impossible paths in its reach-
ability analysis.

Unfortunately, no “ground truth” exists for the Android
permission specification, so we cannot precisely measure the
soundness and completeness. Instead, we estimate the qual-
ity of these by measuring them relative to existing sources
of Android permission information. First, we compare with
the permissions declared by the developers of a corpus of
1,260 applications extracted from the Google Android mar-
ket, which we further refine using our Android UI fuzzer.
Second, we compare against a permission mapping produced
by API fuzzing in the Stowaway project [14]. Because Stow-
away actually executes every path it finds, it cannot have
any impossible paths like PScout. As a result, we expect
PScout to be more complete, but slightly less sound than
Stowaway. Even though PScout works on any version of An-
droid, Stowaway’s specification is for Android 2.2 so for the
purposes of evaluating PScout’s accuracy, all experiments in
this section are performed on Android 2.2 as well.

4.1 Application UI Fuzzer
Our application UI fuzzer exercises the UI of Android ap-

plications and logs the resultant API calls and permission
checks. In contrast to Stowaway, which fuzzes the Android
API directly, we indirectly fuzz the API by fuzzing applica-
tions that use the API. While it is difficult to obtain a more
complete coverage of the API because we are constrained
to the APIs that the applications use, fuzzing applications
has the advantage that we obtain realistic sequences and
parameters to API calls.

Our fuzzing infrastructure consists of a single fuzzer vir-
tual machine (VM) and several Android VMs. For perfor-
mance, we use an x86 port of Android. To fuzz an applica-



tion, the fuzzer VM first installs the application onto one of
the Android VMs using the standard Android Debug Bridge
(ADB). It then proceeds to fuzz the application using an it-
erative process. Initially, the fuzzer receives UI elements, as
well as the mapping from application names to PIDs and
UIDs, from a system service we install inside each Android
VM. It then proceeds to classify the UI using several screen-
specific handlers. Each handler performs two actions. First,
it checks if the UI matches the type of screen it is meant to
handle. For example, the Login Screen Handler checks that
the UI has a username field and a password field and that
there is at least one button to click. Second, it generates
a candidate action for the screen. To continue the example
of the Login Screen Handler, it would heuristically identify
the username and password fields, and return a sequence of
actions that would fill in the username and password for ac-
counts we have created on various services (we use the same
username and password on each service for simplicity) and
then click the heuristically identified login button. Finally,
if more than one handler returns success on classification,
the fuzzer selects the best action to perform based on a pre-
defined ranking of actions and a history of previous actions
taken for similar screens.

4.2 Completeness
To evaluate the completeness of PScout’s permission spec-

ification, we extract a list of API calls made by an applica-
tion and feed that to PScout’s mapping to produce a list
of required permissions. We extract the API calls within
an application using a combination of static analysis and
our UI fuzzer. We need the UI fuzzer to enhance our static
extraction because applications may execute API calls that
are not present in the static image of the application by
dynamically calling methods using Java reflection for exam-
ple. We note that like Stowaway, our application analysis
may be incomplete because it cannot catch all APIs that are
invoked through Java reflection. Therefore, the overdecla-
ration and underdeclaration measurements presented in this
section should not be interpreted as absolute measures but
only as measures of the relative accuracy of PScout versus
Stowaway.

For each application, we compare the list of permissions
produced by PScout with those specified by the developer
in the application’s Manifest file. If we find a permission in
the developer declared list that is not in the PScout gen-
erated list, this indicates that either the developer overde-
clared that permission or PScout is missing a mapping be-
tween an API and that permission. To distinguish between
these two cases we substitute the developer’s permission list
with PScout’s more constrained permission list and use our
UI fuzzer to exercise the application. If the application does
not experience a permission error with PScout’s permission
list, it can either be because the fuzzer did not successfully
trigger a permission error, or that no permission error is
possible because the developer overdeclared the permissions
required for their application. If a permission error does
occur, this indicates that PScout is missing an API to per-
mission mapping.

When we perform this experiment, we find that 543 out
of 1,260 applications declare at least one “extra” permission
that is not in the list produced by PScout. While many ap-
plications overdeclare, most do not do so severely – 53% of
applications overdeclare by one permission and 95% of appli-
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Figure 3: Histogram of UI fuzzer coverage for API
calls and UI elements.
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Figure 4: Scatter plot showing relationship between
fuzzer coverage and application size

cations overdeclare by less than 4 permissions. These num-
bers agree with the measurement of overdeclaration when
Stowaway’s specification is applied to the same set of API
calls extracted from our corpus of applications, despite us-
ing a completely different method for extracting the per-
mission specification (564 overdeclaring apps, 54% and 95%
respectively). We conjecture that our slightly lower level of
overdeclaration overall is a result of PScout’s mapping being
more complete than Stowaway’s.

We find that our fuzzer was not able to cause a permis-
sion error in any of these applications when executed with
PScout’s more constrained list of permissions. While our
UI fuzzer obtains good coverage in general, it is not able
to do so in some cases. This can be due to several factors,
such as the application requiring functionality not present on
the x86 port of Android (telephony, SMS, GPS) or that cer-
tain application behavior is only triggered by non-UI events,
which would not be exercised by the fuzzer (network packet
arrival, system broadcast, intent from third party applica-
tions). We use two metrics to measure the coverage we ob-
tained with our UI fuzzer. First, we statically count the
number of UI elements defined in the Android XML layout
file and then track which of those UI elements are seen by the
fuzzer at run time. Second, we also track the number API
calls exercised by the fuzzer as a percentage over the stati-



cally identified API calls in each application. We summarize
the results in Figure 3. Figure 4 gives a scatter plot showing
the relationship between coverage and the number of UI el-
ements and APIs in an application. The broad distribution
shows that coverage of our fuzzer is relatively independent
of the size and complexity of the application and is likely
more dependent on the other factors mentioned above. As a
whole, the UI fuzzer is able to obtain coverage of over 70%
for both metrics on half of the fuzzed applications.

As a second evaluation of completeness, we directly com-
pare the specification generated by PScout against that gen-
erated by Stowaway’s API fuzzing. Because API fuzzing
tends to be incomplete (the authors could only successfully
execute 85% of the API calls they were able to find), we
expect and confirm that PScout’s mapping is a superset
of Stowaway’s mapping. Moreover, because we are able to
identify and cover many more API calls with our static anal-
ysis than Stowaway – we identify 17,218 mappings while
Stowaway identifies only 1259. Stowaway’s incompleteness
is likely due to the fuzzer’s inability to find and exercise all
APIs in Android and thus produce mappings for those APIs.
Despite the much larger set of mappings that PScout finds,
PScout does not find significantly more overdeclaration than
Stowaway because many of the mappings that PScout has
are for undocumented APIs. As we explain in Section 5,
applications do not use many undocumented APIs, so the
omissions of these APIs from Stowaway’s mapping does not
result in false detection of overdeclaration by Stowaway on
real applications. However, the inclusion of these undocu-
mented APIs in PScout’s mapping allows us to perform a
more complete analysis of Android’s permission map.

We take our evaluation against both Android application
developers and Stowaway’s API fuzzing results as evidence
that the mapping produced by PScout is fairly complete.

4.3 Soundness
We determine the number of incorrect mappings in PSco-

ut’s specification by examining applications where PScout’s
permission list included a permission that was not present
in the developer list of permissions. In total there are 1072
applications where PScout found “extra” permissions that
are not in the developer’s list. When we convert the extra
permissions into mappings by finding the API that caused
PScout to request the permission in the first place, we find
292 unique mappings exercised by the applications, out of
which 31 (11%) do not produce a correct permission in any
application.

However, not all 31 mappings are necessarily incorrect.
Missing permissions in an application’s Manifest could be
caused by developers forgetting to declare a required per-
mission or by PScout listing a permission that an API re-
quires in certain contexts, but the developer can safely ex-
clude because they know their application never calls the
API in those contexts. When run on the same corpus of ap-
plications, Stowaway, finds 924 underdeclaring applications,
which exercise 194 API mappings. Of these mappings only
7 (4%) mappings do not produce a correct permission in any
application. Because Stowaway uses API fuzzing, it cannot
have any false mappings – every mapping found by them
is accompanied by an execution that demonstrates that the
call to the API leads to a check for a certain permission.
We intersect PScout’s 31 extra mappings with Stowaway’s
mapping and remove any mappings that appear in Stow-

away’s specification leaving 24 (8%) possibly incorrect map-
pings. We then manually examine some of the remaining
mappings and further remove 4 mappings: 1 mapping has
a conditional check to ensure the application holds at least
one of the ACCESS_COARSE_ or ACCESS_FINE_LOCATION per-
missions; and 3 mappings are associated with the WAKE_LOCK
or the ACCESS_NETWORK_STATE permission where the permis-
sion requirement depends on the value of an internal state
field. From this, we establish that out of the 292 mappings
exercised by our corpus of applications, an upper bound of
20 (7%) may actually be incorrect mappings.

5. PERMISSION SYSTEM ANALYSIS
We run PScout on four versions of Android and summa-

rize the results of the extracted permission specifications in
Table 1. We chose these versions because these are the An-
droid versions that are predominantly deployed on phones
and tablets in the market. We then analyze the extracted
specifications to try and answer the four main questions we
posed in Section 1.

Is the large number of permissions offered by Android
useful? Are any permissions redundant?
As can be seen from Table 1, Android has had at times,
anywhere from 75-79 different permissions available to third
party application developers. To answer whether the per-
missions are redundant, we compute the conditional prob-
ability of all pairs of Android permissions across their API
mappings. We define two types of correlations between per-
missions: an implicative relationship (i.e. all APIs that
check for permission X also check for the permission Y) or
a reciprocative relationship (i.e. the checking of either per-
mission by an API means that the other permission will also
be checked with a probability higher than 90%).

Out of the 6162 permission pairs in Android 4.0, we found
only 14 implicative permission pairs and only 1 reciprocative
pair, which we list in Table 2. Only one of the permission
pairs, KILL_BACKGROUND_PROCESSES and RESTART_PACKAGES,
is truly redundant – both permissions are checked by the
same set of APIs. The Android documentation indicates
that the API requiring RESTART_PACKAGES has been depre-
cated and replaced with an API that requires KILL_BACK-

GROUND_PROCESS2. Our analysis shows that the new API
works with the old deprecated permission, likely for back-
ward compatibility. We also found that the READ_ and WR-

ITE_SOCIAL_STREAM permissions frequently imply one or both
of the READ_ and WRITE_CONTACT permissions. This is not
a surprise as the Android documentation explains that per-
mission to access contacts is required to access a user’s so-
cial stream3. Several “write” permissions imply their cor-
responding “read” permission meaning that the APIs al-
ways read and modify the corresponding objects. How-
ever, since all these permissions enforce access controls for
content providers, separate read and write permissions are
still required because applications may access the data di-
rectly via content provider URIs. We analyzed the source
code for the 3 remaining implicative permission pairs to

2http://developer.android.com/reference/android/
Manifest.permission.html
3http://developer.android.com/reference/
android/provider/ContactsContract.StreamItems.
StreamItemPhotos.html

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/provider/ContactsContract.StreamItems.StreamItemPhotos.html
http://developer.android.com/reference/android/provider/ContactsContract.StreamItems.StreamItemPhotos.html
http://developer.android.com/reference/android/provider/ContactsContract.StreamItems.StreamItemPhotos.html


Android Version
2.2 2.3 3.2 4.0

# LOC in Android framework 2.4M 2.5M 2.7M 3.4M
# of classes 8,845 9,430 12,015 14,383
# of methods (including inherited methods) 316,719 339,769 519,462 673,706
# of call graph edges 1,074,365 1,088,698 1,693,298 2,242,526
# of permission mappings for all APIs 17,218 17,586 22,901 29,208
# of permission mappings for documented APIs only 467 438 468 723
# of explicit permission checks 229 217 239 286
# of intent action strings requiring permissions 53 60 60 72
# of intents ops. w/ permissions 42 49 44 50
# of content provider URI strings requiring permissions 50 66 59 74
# of content provider ops. /w permissions 916 973 990 1417
KLOC/Permission checks 2.1 2.0 2.1 1.9
# of permissions 76 77 75 79
# of permissions required only by undocumented APIs 20 20 17 17
% of total permissions required only by undocumented APIs 26% 26% 23% 22%

Table 1: Summary of Android Framework statistics and permission mappings extracted by PScout. LOC
data is generated using SLOCCount by David A. Wheeler.

Existing New API undoc→doc
2.2→2.3 9 40(6%) 0
2.3→3.2 31 25(6%) 2
3.2→4.0 48 56(19%) 212

Table 3: Changes to the permission specification
over time. We give the number of existing APIs that
acquired a permission requirement and the number
of new APIs that require permissions. The percent-
age in brackets gives the number of new APIs re-
quiring permissions as a fraction of all new APIs
introduced between versions. The final column lists
the number of undocumented APIs requiring per-
missions in the previous version that became docu-
mented APIs in the new version.

determine the cause of the correlation. USE_CREDENTIALS

and MANAGE_ACCOUNTS are very related, the former allowing
the application to use authentication tokens from registered
accounts and the latter to manage those accounts. Both
WRITE_HISTORY_BOOKMARKS / GET_ACCOUNTS and ADD_VOICE-

MAIL / READ_CONTACTS are also pairs of related permissions,
which are checked when accessing the browser and call_log

content providers respectively. ACCESS_COARSE_ and ACC-

ESS_FINE_LOCATION is the only reciprocative pair. While in
most cases FINE permission is a superset of COARSE permis-
sion, getting location changes from the PhoneStateListener
is only allowed if the COARSE permission is held.

Summary: While there are small amounts of redundancy
illustrated in these 15 pairs, the vast number of Android
permissions have very little correlation with any other per-
mission. As a result, we believe there is little redundancy in
the Android permission specification.

How many undocumented APIs require permissions and
how common is it for applications to use undocumented
APIs?
Table 1 gives the total number of APIs that require per-
missions as well as the number of documented APIs that
require permissions. From this, we can see that there are
anywhere from 16K-28K undocumented APIs that require
permissions across different versions of Android. In addition,
22-26% of the declared permissions may only be checked
if an application uses undocumented APIs. For example:
CLEAR_APP_CACHE, SET_DEBUG_APP and MOUNT_UNMOUNT_FILE-

SYSTEMS cannot be required if only documented APIs are
used. These permissions are generally related to specialized
system functionality, which seems to justify why such func-
tionality is not exposed to average application developers.
This suggests that if the intent is for developers to only use
documented APIs, then Android could export a significantly
smaller list of permissions.

From our study of 1,260 Android 2.2 applications in Sec-
tion 4, we find that only 53(3.7%) applications use undoc-
umented APIs. Out of the 13,811 APIs that those applica-
tions use, only 158(1.1%) are undocumented. In contrast,
the same applications use 292 API calls that require per-
missions, out of which 22(7.5%) are undocumented. Thus,
applications make very little use of undocumented APIs,
but for the undocumented APIs they do use, a significantly
larger fraction of those require permissions than for the doc-
umented APIs they use. We also have noticed that across
versions, a number of APIs requiring permissions that were
undocumented have become documented in later versions.
The third column of Table 3 shows the number of undocu-
mented APIs that require permissions became documented
in the next major version we examined. As can be seen,
initially not many undocumented APIs were made docu-
mented, but this changed in Android 4.0, which made many
previously undocumented APIs documented, possibly in ac-
knowledgment that some undocumented APIs are useful and
that the wider Android developer community should be made
aware of them. This also helps explain the lower percentage



permission X permission Y P(Y|X) P(X|Y)

KILL_BACKGROUND_PROCESS RESTART_PACKAGES 1.00 1.00
WRITE_SOCIAL_STREAM WRITE_CONTACTS 1.00 0.93
READ_SOCIAL_STREAM READ_CONTACTS 1.00 0.92
USE_CREDENTIALS MANAGE_ACCOUNTS 1.00 0.73
WRITE_SOCIAL_STREAM READ_SYNC_SETTINGS 1.00 0.62
WRITE_SOCIAL_STREAM READ_SOCIAL_STREAM 1.00 0.59
WRITE_CONTACTS READ_CONTACTS 1.00 0.58
WRITE_SOCIAL_STREAM READ_CONTACTS 1.00 0.54
WRITE_HISTORY_BOOKMARKS READ_HISTORY_BOOKMARKS 1.00 0.39
WRITE_HISTORY_BOOKMARKS GET_ACCOUNTS 1.00 0.30
WRITE_CALENDAR READ_CALENDAR 1.00 0.17
ACCESS_LOCATION_EXTRA_COMMANDS ACCESS_COARSE_LOCATION 1.00 0.05
ACCESS_LOCATION_EXTRA_COMMANDS ACCESS_FINE_LOCATION 1.00 0.05
ADD_VOICEMAIL READ_CONTACTS 1.00 0.04
ACCESS_COARSE_LOCATION ACCESS_FINE_LOCATION 0.95 0.90

Table 2: Highly correlated permissions in Android. P(Y|X) denotes the conditional probability computed by
taking the percentage of APIs that check for permission X that also check for permission Y.
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Figure 5: Number of documented APIs that map to
a permission in Android 4.0. Each bar represents
the number of documented APIs that require a par-
ticular permission.

of permissions that are only used by undocumented APIs in
Android 4.0.

Summary: There are many undocumented APIs that re-
quire permissions and even some permissions that are only
needed if an application is using undocumented APIs. Cur-
rently, applications do not commonly make use of undocu-
mented APIs.

How complex and interconnected is the relationship
between Android APIs and permissions?
Figure 5 and Figure 6 show histograms of the number of doc-
umented APIs that map to a permission and the number of
permissions required by an API respectively. Together both
of these graphs show that while the permission specification
is very broad in size, it is not very interconnected – over 80%
of APIs only require at most 1 permission, and very few re-
quire more than 2 or 3. Similarly, 75% of permissions have
fewer than 20 API calls that require them. We also compute
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Figure 6: Number of permissions required by a doc-
umented API. Each bar represents the number of
documented APIs that require that number of per-
missions.

the length of the path in the call graph between API call and
the permission check for each mapping. We find that over
60% of the mappings have a path length of less than 5 edges
indicating that the permission check happens fairly early on
in the processing of most API calls.

Table 4 gives the 5 permissions in Android 4.0 with the
highest number of API mappings and the 5 permissions
with the highest number of checks. Having a lot of APIs
mapping to a permission does not necessarily translate to a
widespread functionality for that permission. The top two
permissions, SET_WALLPAPER and BROADCAST_STICKY, are bo-
th required for methods in the Context class which has 394
subclasses. Most of the documented API mappings for these
two permissions are inherited methods from documented
subclasses of Context. As a result, the number of mappings
can sometimes be a function of the object hierarchy rather
than functionality. High numbers of API mappings also
does not translate into large numbers of permission checks.
For example, all APIs using the SET_WALLPAPER permission



# of mappings # of checks

Highest # of mappings
SET_WALLPAPER 97 1,466 1 1
BROADCAST_STICKY 97 2,472 5 7
WAKE_LOCK 54 3,874 4 5
BLUETOOTH 53 1,878 37 67
READ_CONTACTS 24 1,244 29 275
Highest # of checks
BLUETOOTH 53 1,878 37 67
READ_CONTACTS 24 1,244 29 275
READ_SOCIAL_STREAM 22 1,145 22 163
BLUETOOTH_ADMIN 22 1,362 16 44
READ_SYNC_SETTINGS 21 1,086 12 85

Table 4: Heavily used and checked permissions.
This table gives the permissions with the largest
number of API mappings and largest number of
checks in Android 4.0. In each column, the left num-
ber represents mappings and checks for documented
APIs only, the right number represents mappings
and checks for all APIs.

pass through a single permission check in the WallPaperMan-
agerSerivce. Similarly, the vast majority of APIs that need
BROADCAST_STICKY or WAKE_LOCK pass through a small num-
ber of permission checks in the sendStickBroadcast method
and PowerManagerService class. The permissions that map
to the largest number of APIs tend to be permissions pro-
tecting generic system resources. In contrast, a larger frac-
tion of the permissions with a large number of checks, such
as READ_CONTACTS and READ_SOCIAL_STREAM, tend to protect
content providers that store private information belonging
to the user.

Summary: The permission system is broad but not heavily
interconnected. Permissions that have many API mappings
tend to protect generic system resources rather than user
data and have fewer permission checks.

How has the permission system of Android evolved over
time?
From Table 1, even though the amount of code in Android
has increased by over 40% from 2.2 to 4.0, there has re-
mained roughly one permission check for every 2KLOC in
all versions. Thus, the amount of checking that Android
performs to ensure that applications have permissions to
access sensitive resources has increase proportionally with
the functionality in the OS. However, when we compare the
number of documented APIs that require permissions, we
see that this has increased by over 54% in Android 4.0, indi-
cating that Android 4.0 exposes more permission-requiring
functionality to applications via APIs. This increase can at
least be partially explained by examining the Android 4.0
SDK documentation, which highlights key changes involving
user profiles and social network sharing on all applications.
Such functionality requires access to sensitive content stored
by new content providers, which is reflected in the 43% in-
crease in the number of content provider permission checks.

To further explore how the amount of sensitive function-
ality that is exposed to application has increased over time,
Table 3 summarizes how permission requirements have been
added to Android APIs over time. As we can see, there

have been both existing APIs that have been upgraded to
require permissions, new APIs added that require permis-
sions, as well as undocumented APIs that require permis-
sions became documented. In Android 4.0, the LOC in-
creased by 27% while the number of documented APIs only
increased by 4%. Recall from Table 1 that the proportion
of functionality that requires permissions has remained rel-
atively constant, so with the fewer new APIs in 4.0, a larger
percentage of those APIs must require permissions (19% in
Android 4.0 versus 6% in previous versions). This indicates
there is more permission-requiring functionality behind each
new Android 4.0 API.

Initially, we hypothesized that the APIs whose permission
requirements changed between versions might have done so
because of errors in Android access control policy or due to
fundamental changes in the functionality of the APIs. How-
ever, when we examined the new paths between the APIs
and permission checks that caused the change in permis-
sion requirement, we found that the changes were actually
often due to subtle and innocuous code changes. For ex-
ample, in Android 2.2 the startDiscovery method in the
BluetoothAdapter starts bluetooth device discovery and al-
ready requires the BLUETOOTH_ADMIN permission. Between
Android 2.2 and Android 2.3, a call to getState was added,
which checks if the bluetooth device is on and terminates
the function early if it is not. getState requires the BLUE-

TOOTH permission so as a result, startDiscovery also re-
quires the BLUETOOTH permission as of Android 2.3. The
added functionality was for debugging and does not funda-
mentally change the behavior of startDiscovery, yet results
in an additional permission requirement. In another exam-
ple, between Android 2.3 to Android 3.2, the resetPassword
method in the DevicePolicyManagerService had a call to
checkPasswordHistory added to it to make sure the user did
not reset their password to a recently used password. check-
PasswordHistory requires the WRITE_SETTINGS permission,
which allows the application to read or write phone settings,
so as a result, resetPassword also requires WRITE_SETTINGS.
However, in Android 4.0, which is supposed to be a merge of
Android 2.3 and Android 3.2, the call to checkPasswordHis-

tory has been removed, and resetPassword no longer needs
the WRITE_SETTINGS permission. These examples illustrate
that changes in the permission requirement over time are
often due to arbitrary reasons and the addition or removal
of a permission requirement is not often indicative of errors
in permission checking or in fundamental changes to API
functionality.

We believe that there is a fundamental trade-off between
the stability of a permission specification over time and how
fine-grain the permission specification is. On one hand,
stability of the permission specification is desirable as it
means that application developers do not need to update
the permissions their applications declare as the underly-
ing OS changes. On the other hand, fine-grain permis-
sions provide better least-privilege protection. For exam-
ple, combining the BLUETOOTH_ADMIN and BLUETOOTH permis-
sions would mean that 10% of the APIs that only had the
BLUETOOTH_ADMIN permission would unnecessarily gain the
BLUETOOTH permission and 64% of the APIs that only had
BLUETOOTH permissions would unnecessarily gain the BLUE-

TOOTH_ADMIN permission. However, this reduction in least
privilege would have prevented the change in permissions
needed for startDiscovery from Android 2.2 to 2.3. We



have found several instances of the same trade-off within An-
droid. While we do not believe that one can have both per-
mission stability and least-privilege together, we believe that
awareness of this trade-off may help the design of permission
systems in newer mobile OSs such as Windows Phone and
B2G.

Summary: Over time, the number of permission checks in
Android has remained constant with code size, though the
amount of sensitive functionality used by APIs has been in-
creasing. There is a fundamental trade-off between stability
of the permission specification and enforcing least-privilege
with fine-grain permissions.

6. RELATED WORK
The closest related work is the Stowaway project [14], Bar-

tel et al. [4] and Vidas et al. [21]. The main difference be-
tween PScout and previous work is that their focus is to
measure the amount of permission overdeclaration in third
party applications. As a result, they have varying levels of
completeness in the specification they extract to measure
the overdeclaration, but none are as complete as PScout.
We discuss the specific differences below.

Stowaway extracts an Android permission specification
using API fuzzing and as a result is less complete than
PScout. For their purposes, this was sufficient since the main
purpose of their work was to measure the amount of permis-
sion overdeclaration as opposed to extract a complete spec-
ification. The authors of Stowaway have made their map-
ping available so we are able to compare against theirs. For
the most part, PScout’s specification is a superset of their
extracted specification and the rate and amount of overdec-
laration we measure in applications also agrees with their
results.

Bartel et al. perform a call-graph based analysis on the
Android framework that is very similar, but less extensive
than PScout’s. The main differences are that PScout han-
dles Intent and Content Provider functions whereas Bartel’s
analysis only infers permission checks on checkPermission

functions. As a result, while Bartel’s mapping is double the
size of that reported by Stowaway because they use static
analysis, it is still considerably less complete than the map-
ping produced by PScout, likely because of the missing per-
mission checks.

Vidas et al. extract a permission specification by scanning
the Android documentation. As a result, their specification
is the least complete of all previous work since the Android
documentation is incomplete.

There is a large body of security research on permission-
based systems [15,16] and in Android security [6,7,8,11,12,
13, 18]. Many techniques are proposed to protect user pri-
vacy, detect malware, or certify application security. Batyuk
et al. [5] use static analysis to detect privacy leakage in An-
droid applications. AppFence [18] modifies Android OS
to anonymize sensitive user data for applications that are
not authorized to access it and use taint analysis to prevent
applications that are authorized to use sensitive user data
from transmitting leaking it. Crowdroid [7] analyzes the
pattern of system calls made by applications to detect mal-
ware. We feel that having an accurate permission specifica-
tion for Android, as well as an analysis of that specification,
is complementary to work on securing Android and other
similar smartphone OSs.

There has been previous work in extracting specifications
from programs for the purposes of explicit model check-
ing. Bandera extracts finite state models from Java source
code [9] and Lie et al. [19] extract models from cache coher-
ence protocol code. To produce models that are checkable
by a model checker, both must abstract details of the im-
plementations and perform size reduction on elements in the
code when they extract their models. Other model checkers,
such as SLAM [2] and BLAST [17] take a step further and
perform automatic abstractions as they check the code. In
contrast, the size of the code base PScout is analyzing is far
larger than the code base in this previous work.

7. CONCLUSION
We built PScout, a version-independent tool to extract

the permission specification and take the first steps to an-
swer some key questions about Android’s permission system.
One of the challenges with extracting a permission specifi-
cation from Android is that the permission checks and API
calls that lead to them are distributed over an extremely
large code base. We find that it is possible to extract an ac-
curate permission specification using light-weight call-graph
analysis, augmenting that analysis with domain-specific in-
formation to selectively refine parts of that call-graph with
flow-sensitive analysis, and using a uniform abstraction for
permission checks. Our evaluation of the extracted speci-
fication shows that it is more complete when compared to
other permission specifications, but still has a low number
of false mappings due to infeasible paths.

By using PScout to analyze several major versions of the
Android OS we expose some interesting characteristics of
the Android permission specification. First, the Android
permission system has little redundancy in its set of non-
system permissions, but a small subset of the permission
can be hidden from most developers since they are only re-
quired by undocumented APIs and very few applications use
undocumented APIs. Second, the fine-grained permissions
cause innocuous code changes to result in churn in the per-
mission requirements of APIs. While a coarser permission
set can improve the stability of permission specification and
alleviate this churn, it comes at the expense least-privilege
protection. From our experience, we believe that PScout
can form a basis for more sophisticated static analysis tools
to further analyze and understand the implementation and
design of smartphone permission systems.
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