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Abstract—The existence of pre-patch windows allows ad-
versaries to exploit vulnerabilities before they are patched.
Prior work has proposed to harden programs with security
workarounds to enable users to mitigate vulnerabilities before a
patch is available. However, it requires access to the source code
of the programs. This paper introduces RVM, an approach to
automatically hardening binary code with security workarounds.
RVM statically analyzes binary code of programs to identify
error-handling code in the programs, in order to synthesize secu-
rity workarounds. We designed and implemented a prototype of
RVM for Windows and Linux binaries. We evaluate the coverage
and performance of RVM on binaries of popular Windows and
Linux applications containing real-world vulnerabilities.

I. INTRODUCTION

Software users are plagued by emerging vulnerabilities
on a daily basis. According to cvedetails [17], a popular
database for disclosed vulnerabilities, 15,830 CVE entries for
vulnerabilities have been created this year, which is a 7%
increase over last year. Patching vulnerabilities is effective
and necessary, but there exist pre-patch windows which allow
adversaries to exploit vulnerabilities before patches are created
and applied [19]. Because pre-patch windows are mainly
caused by the inevitable time and effort required to manually
analyze vulnerabilities, then create and test patches for the
vulnerabilities, it is unrealistic to expect pre-patch windows
can be reduced considerably or eliminated unless automated
patch generation is widely adopted.

To protect applications in the absence of patches, many
tools have been proposed to harden applications in order to
raise the bar for adversaries to exploit vulnerabilities. The level
of security guarantees that they provide is usually inversely
proportional to the extent of the information required for target
applications and the cost in terms of the loss of performance
or functionality. The vast majority of these tools aim to
protect applications without any functionality loss [18], [25],
[27]. Unfortunately, this goal usually causes high performance
overhead and thus it is difficult for users to adopt these tools
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in practice.

Security Workaround for Rapid Response (SWRR) is a
recently proposed approach to hardening applications with
negligible or no performance overhead in exchange of little or
minor functionality loss [19]. SWRRs follow the same princi-
ple behind the commonly used configuration workaround [1],
[3], [6], [7] that sacrifices certain functionality to mitigate vul-
nerabilities rapidly before patches are available. The principle
is that users are willing to exchange minor functionality loss
for security.

While SWRRs is a promising solution to allow users to
exchange minor functionality loss for the rapid protection for
severe vulnerabilities, it is designed and generated in the form
of source code and instrumented into the source code of a
target application [19]. As a result, it can be used only on
open-sourced applications or by software vendors who have
access to source code.

In this paper, we propose an approach called RVM that
applies SWRRs directly to binary code in order to address the
limitation. RVM automatically generates SWRRs in the form
of binary code and incorporates them to a target application
without access to the source code of the application. This
allows regular users to use RVM to mitigate vulnerabilities
swiftly in close-sourced applications.

RVM faces two major challenges in applying an SWRR
to binary code: 1) identifying error-handling code in binaries,
and 2) generating and instrumenting binaries to incorporate an
SWRR.

First, one important reason that configuration workaround
has wide adoption in practice is that it achieves unobtrusive-
ness, the property that it affects only the functionality relevant
to vulnerable functions. To achieve similar unobtrusiveness of-
fered by configuration workaround, Talos relies on the success
of finding existing error-handling code of a target application to
generate SWRRs [19]. However, it is challenging to follow the
same approach to finding existing error-handling code in binary
code. We discuss this challenge in details in Section III-A and
Section III-B.

Second, generating SWRRs in the form of binary code
requires more considerations, such as calling conventions,
than in the form of source code, and instrumenting binary
code to incorporate SWRRs requires knowing the location in
binary executable files at which SWRR is instrumented and
considering whether the instrumentation requires relocating



other existing code and data. The challenge is discussed in
more details in Section III-C.

RVM addresses the first challenge by using a novel ap-
proach in finding error-handling code and by adopting static
program analysis specifically designed for binary code. Par-
ticularly it uses API error specifications automatically mined
from online API documentations as the basis, then by fol-
lowing error propagation to find error-handling code in binary
code. To facilitate analyzing binary code, it conducts analysis
on VEX IR code lifted from binary instructions.

It addresses the second challenge by generating SWRRs
using code cloning and finding the location of instrumentation
using an approach oblivious to file formats.

In summary, we make the following contributions in this
paper:

e We propose an approach to finding error-handling
code in existing applications by mining API error
specifications from API documentations and leverag-
ing error propagation.

e  We designed and implemented a prototype of RVM
that can apply SWRRs in the form of binary code
on x86-64/x86 Windows and Linux applications. The
code for the prototype is available at https:/gitlab.
com/zhenhuang/rvm.

e  We evaluated the coverage of SWRRs produced by our
prototype through a case study on using SWRRs to
mitigate real-world vulnerabilities, and also evaluated
the performance of our prototype.

II.
A. SWRR

Security Workaround for Rapid Response (SWRR) is
a mechanism proposed to mitigate software vulnerabilities
rapidly [19]. It is a simple code snippet instrumented into a
target program to prevent a vulnerability from being triggered.
Because it disallows the execution of the vulnerable code at
the granularity of functions, it can prevent any inputs including
polymorphic inputs designed to trigger the vulnerability, and
thus stops any form of further attacks such as ROP [29],
albeit at the cost of losing the functionality provided by the
instrumented function.

BACKGROUND AND RELATED WORK

We illustrate how an SWRR mitigates a vulnerability using
an example vulnerability. Listing 1 presents the vulnerable
code adopted from a real-world vulnerability CVE-2011-
4362 in lighttpd, a popular web server. The vulnerable
function base64_decode decodes an input base64 string
using a lookup table base64_reverse_table with the
input character as the index. Owing to the lack of a proper
check on whether the input character can be used as valid
index, an adversary can craft malicious input strings to cause
out-of-bounds table lookup and thus abnormal termination of
lighttpd.

The design of SWRR highlights two key features: sim-
plicity and unobtrusiveness. First, as shown in Listing 2, an
SWRR is merely a simple return statement instrumented to the
beginning of function base64_decode so that no vulnerable
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unsigned charx base64_decode (char =xout,char =in) {

unsigned char =xresult = out;
int ch, i =0, j = 0;
for (...) {
ch = in[i];
ch = base64_reverse_table[ch];
result[j] = ch;
}
if (ch == base64_pad & i % 4 == 0)
return NULL;
return result;
}
// returns 0 on failure; 1 on success
int http_auth_basic_check (...) {
if (!base64_decode (...)) {
log_error_write (”decodeing _base64—string .
failed”);
return 0;
}
return 1;
}
Listing 1. Example vulnerability, adopted from CVE-2011-4362 in
lighttpd.

unsigned charsx base64_decode (..., char =in) {

/% SWRR inserted at top of function =/
return NULL;
/% original function body =/
}
Listing 2. An SWRR instrumented into the vulnerable base64_decode

function in Listing 1.

code will be executed and thereby no inputs can trigger out-
of-bounds lookup of table base64_reverse_table. The
SWRR effectively neutralizes the vulnerability by disabling
lighttpd’s base64 decoding.

Second, by returning a NULL, the SWRR achieves un-
obtrusiveness by indicating an error to the caller function
http_auth_basic_check, so that 1ighttpd can prop-
erly handle this error. Essentially this leads to the rejection of
any HTTP basic authentication that requires base64 decoding.
However, other functionality is intact so lighttpd can
continue to process other forms of authentications.

Because SWRRs are simple and require only the informa-
tion about which return values should be used to indicate an
error, they can be mechanically synthesized and instrumented
into a target program and save the time and effort of human
developers. As a result, they can dramatically reduce the pre-
patch window [19] and used as a rapid response to mitigate
software vulnerabilities.

B. Hardening Binary Code

Many approaches [26], [27], [34], [36], [37] have been
proposed to hardening binary code of programs to protect
the programs from malicious attacks such as control flow
hijacking, malicious web browser extensions, Return-Oriented
Programming (ROP) [29] and Counterfeit Object-oriented Pro-
gramming (COOP) [28].



Some of them implement various forms of Software-based
Fault Isolation (SFI) [32], [35] or Control Flow Integrity (CFI)
[14] on binary code. Among them, Lockdown enforces CFI
on ELF dynamic shared objects and rewrites binaries using
Dynamic Binary Instrumentation (DBI) [27]. NaCl adopts SFI
and provides an execution sandbox for native binary code,
executed as part of web browser extensions [37].

CFI and SFI can provide comprehensive protection against
different types of exploits. However, they incur from 5 to 20%
performance overhead. In contrast, SWRR instrumented by
RVM incurs neglect or no performance overhead.

Another form of binary code hardening is code randomiza-
tion. To hinder ROP attacks, SmashGadgets [26] randomizes
binary code using techniques such as atomic instruction sub-
stitution, instruction reorder, and register reassignment; as a
result, program instructions intended to be used as gadgets [29]
for these attacks can no longer be used. While code randomiza-
tion is effective in thwarting ROP attacks, it does not prevent
other types of exploits such as regular stack buffer overflow
and control flow hijacking [15].

To thwart exploits to specific heap vulneabilities, HPAC
changes the behavior of heap management routines such as
malloc and free at runtime when such vulnerabilities are
to be triggered by malicious inputs [38]. HPAC encodes the
calling context when a vulnerability is triggered by using
sample exploits offline and matches such calling context at
runtime to decide whether to change the behavior of heap
management routines accordingly.

Compared with existing binary hardening tools, RVM in-
struments SWRRs that are designed to be simple and effective
in preventing vulnerabilities from being triggered by disabling
the execution of entire vulnerable functions. RVM gives users
a choice between security protection and minor functionality
loss in response to severe vulnerabilities.

C. Inferring Error-Handling Code

Inferring error-handling code in programs has mainly two
purposes. First, knowing the locations of error-handling code
allows tools designed to find bugs in error-handling code to
focus on these locations [21], [23], [23], [33]. Second, error-
handling code indicates error return values that can be used to
synthesize SWRRs for security [19].

To infer error-handling code, most of these tools rely on
information about the error return values of API functions
called by a target program. They either make some unsound
assumptions on error return values, such as that all non-
zero return values are error return values as long as zero is
also one of the return value [23], or depend on other tools
or documentations to provide such information [21], [33].
Particularly LFI works on binary code. However, it does not
perform interprocedural error propagation like RVM does.

In contrast, APEXx uses characteristics include the number
of statements, function calls, and paths to differentiate error-
handling code from other code [22]. Furthermore, Talos adopts
a two phase approach [19]. In the first phase, it relies on
heuristics such as “error-handling code often calls error log-
ging functions before returns a constant” to generate an initial
list of error return values. In the second phase, it follows error

propagation in the target program to identify other error return
values.

D. Generating Vulnerability Patches

Some approaches have been proposed to automatically
generate patches for vulnerabilities. Senx uses expert-defined
and program-independent safety properties to generate patches
to fix vulnerabilities [20]. In order to generate source code
patches, it uses concolic execution to map safety properties
to program expressions in target programs. The correctness of
the generated patches is enforced by the correctness of the
expert-defined safety properties from which the patches are
generated.

CodePhage generates patches for a target program by bor-
rowing correct code from other programs [31]. It is designed
specifically to generate patches that add a check to prevent
a vulnerability from being triggered. From a program that
performs the same functionality and takes the same inputs
as the target program, it identifies such a check needed for
the target program and then transfers the check to the target
program.

Unlike these approaches that aim to fix vulnerabilities
without causing functionality loss, RVM aims to mitigate
vulnerabilities rapidly with the cost of functionality loss.

III. PROBLEM DESCRIPTION AND CHALLENGES

As discussed in Section II-A, SWRRs is a simple, unob-
trusive, and effective mechanism to rapidly mitigate software
vulnerabilities. Talos has demonstrated how to automatically
synthesize and instrument SWRRs for C/C++ programs [19].
However, it is challenging to apply SWRRs directly to binary
code.

In order to achieve unobtrusiveness, i.e. not affecting func-
tionality irrelevant to the vulnerable function, an SWRR needs
to return an error value to invoke existing error handling code
to reject the input that triggers the corresponding vulnerability,
and to recover from the error in order to be able to process
the next input. For example, the SWRR for vulnerability CVE-
2011-4362 in 1ighttpd needs to return a NULL from the
vulnerable function base64_decode so that its caller would
be able to propagate the error and eventually lighttpd
would reject the request that triggers the execution of the
vulnerable function.

To identify error return values that can be used by SWRR,
Talos finds existing error handling code of a target program by
using five heuristics in static program analysis. It first uses two
main heuristics, error-logging function and NULL return, to
find a initial set of functions that contain error-handling code,
then uses two extension heuristics to identify error propagation
in the program and thus finds error-handling code in other
functions based on the initial set of functions. While Talos
achieves success on its coverage on open-sourced programs,
we find using these heuristics on close-sourced program pose
new challenges.

A. Main Heuristics

The main heuristics play a critical role for the success of
Talos, because they not only achieve a significant coverage



by themselves but also form the basis for other heuristics.
However, we find that the main heuristics have two major
limitations when applying to close-sourced programs.

First, many close-sourced programs, especially those de-
signed only for Windows, make little use of error-logging
functions. One possible reason is that Windows API functions
follow a well-established standard set of error return values
[11] and thus examining a return value is sufficient to reveal
what kind of error occurs, without the need of logging the
error. As a result, the error-logging function heuristic does
not find much error-handling code for close-sourced programs
on Windows. Second, returning a NULL from a function that
normally returns a valid pointer usually indicates an error
occurred. So an SWRR might return NULL as an error return
value for a function that returns a pointer. However, it is non-
trivial to decide whether a function returns a pointer without
the type information of the program. We will describe how we
address these limitations in Section V-B and Section V-C.

B. Extension Heuristics

The extension heuristics rely on data flow analysis to
identify error propagation in a target program. For example, the
error raised in function base64_decode is propagated to its
caller function http_auth_basic_check via the return of
NULL at line 12, and further propagated to the caller function
of http_auth_basic_check via the return of O at line
21, as shown in Listing 1.

To recognize such error propagation, a data flow anal-
ysis needs to follow exactly how the return value from
base64_decode is checked in its caller at line 19 and
what constant values are returned by its caller when the check
succeeds and when the check fails, respectively.

However, data flow analysis on binary code in general
is more challenging than on source code due to compiler
optimization, mixed use of registers and variables, and lack
of type information. We will describe our solution to address
this challenge in Section V-D, Section V-E, and Section V-F.

C. Generating and Instrumenting SWRRs

An SWRR in the form of source code is simply a C/C++
return statement. But such a statement is implemented
as different instructions for different architectures. Even for
the same architecture, different calling conventions can result
in different instructions. For example, stdcall convention
dictates that caller functions allocate stack space for the call
and callee functions clean up the allocation, while _cdecl
convention dictates the opposite. An SWRR for these two
different calling conventions must behave differently to follow
the calling conventions, and thus RVM must generate different
instructions accordingly. Therefore, generating SWRRs in the
form of binary code needs to consider the target architecture
and the calling convention.

Instrumenting an SWRR in the form of source code is sim-
ply inserting the source code of the SWRR at the beginning of
the source code of a target function; so only the starting source
code line of the function is required. However, instrumenting
an SWRR in binary code requires knowing the location of the
function in binary code, which depends on the format of the

1

int http_auth_basic_check (...) {

400684: push %rbp
400685: mov orsp ,%1rbp
400688: sub $0x20,%rsp
4006b6: callq 400672 <base64_decode>
4006bb : test Yorax ,Jorax
4006be : jne 4006dd
4006¢0 : mov $0x400798 , % edi
4006¢5: callq 400646 <log_error_write >
4006d6: mov $0x0,%eax
4006db: jmp 4006e2
4006dd : mov $0x1,%eax
4006¢e2: leaveq
4006e3: retq
Listing 3. Assembly  code  compiled from  function

http_auth_basic_check in Listing 1.

binary code. We describe how our solution generates SWRRs
in the form of binay code and instruments SWRRs in binary
code in Section V-H and Section V-1, respectively.

IV. RVM

We design an approach called RVM (Rapid Vulnerability
Mitigation) to address the challenges described in Section III.
In this section, we describe a typical usage scenario of RVM.

RVM is designed to be used by end-users of a target
program to rapidly mitigate a known but not yet patched
vulnerability in the target program. To illustrate its usage,
we use a real-world vulnerability CVE-2011-4362 in function
base64_decode of lighttpd web server, which is pre-
sented in Listing 1 .

When a user of 1ighttpd knows that vulnerability CVE-
2011-4362 in function base64_decode exists in her ver-
sion of httpd, from the security notice of the vendor of
lighttpd [3], she may have several choices.

First, she can download the official source code patch,
apply it to the source code of 1ighttpd, build the source
code, and install the newly built binary. This requires that she
understands how to apply the source code patch and build
lighttpd from the source code.

Second, she can apply the configuration workaround dis-
closed in the security notice [3] by disabling the mod_auth
module in 1ighttpd, in order to mitigate the vulnerability.
Unfortunately, her 1ighttpd will no longer be able to use
any form of HTTP authentication once the mod_auth module
is disabled.

Third, she can wait for her OS vendor to issue a patched
lighttpd as an OS update, if she is unable to follow the
first choice and the second choice. But this can take a long
time. As a matter of fact, the vendor of RedHat Linux applied
the patch to the 1ighttpd shipped with the OS six months
after the source code patch was released [4].

Last, she can run RVM with the vulnerable function name,
base64_decode, and the location of the binary code of
lighttpd, to automatically generate an SWRR for this
function and to apply the SWRR to the binary code of her
lighttpd. After being applied, this SWRR mitigates the
vulnerability and only disables the basic HTTP authentication,
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which depends on base64 decoding; other forms of HTTP
authentications can still be used.

Compared with other choices, RVM is a solution that offers
the benefits of rapid response, easy-to-use, and unobtrusiveness
together, which are desirable in most situations.

V. DESIGN AND IMPLEMENTATION
A. Overview

RVM generates an SWRR in binary code for a target
program and inserts the SWRR into the target program in four
phases, as shown in Figure 1.

The first phase takes as input the binary code of a program
and API documentation that describes error return values. It is
made up of four steps:

e identifying function return types — outputs the return
type for functions in the program, whose details are
described in Section V-C

e identifying constant return values — outputs constant
function return values, whose details are described in
in Section V-D

o finding calls followed by constant return — outputs a
list of function call that are followed by a return of a
constant value, referred to as constant returns, whose
details are described in Section V-E

e mining API error specifications — mines API docu-
mentation to find API error specifications, i.e. error
return values for API functions, whose details are
described in Section V-B

The second phase finds error return values for functions
in the target program. It uses several heuristics to find error-
handling code in a target program and takes the following
information as input, as shown on Figure 1.

o Constant values returned by every function in the
program

e Function calls that are followed by a return of a
constant value, and each of these function calls and
its corresponding return must be guarded by the same
condition

e  Error return values for API functions

e Debug symbols that include the name and entry ad-
dress for every function in the program

The second phase outputs the constant values used as error
return values for functions in the program. It consists of two
steps: locating error propagation and finding error-handling
code, which will be described in details in Section V-F and
Section V-G, respectively.

The third phase generates an SWRR. It takes as input the
name of the vulnerable function and the error return values
for functions in the program, synthesizes an SWRR for the
function and outputs the SWRR along with the entry address of
the function. The name of the vulnerable function can usually
be found in public CVE databases or the bug report of a
vulnerability [19]. This phase contains the step of generating
SWRRs. We describe it in more details in Setion V-H.

The fourth phase takes the entry address of the vulnerable
function and the generated SWRR as input, and outputs a mod-
ified binary code of the program with the SWRR instrumented.
This phase includes one step: inserting SWRRs. We describe
it in details in Setion V-I.

We base RVM on angr [30], a static analysis framework for
binary code. and Talos [12], [19], a tool generating and instru-
menting SWRRs for C/C++ programs. Talos is implemented as
a standalone frontend that analyzes LLVM IR code generated
from C/C++ source code, and a backend that generates SWRRs
in the form of C/C++ source code, and instruments SWRRs
into C/C++ programs. We implement the four steps in the first
phase, shown on Figure 1, as a new frontend for Talos. We
extend the backend of Talos to implement the steps in all other
phases, including generating SWRRs in the form of binary
code and instrumenting SWRRs.

Because RVM works on VEX IR code [24] lifted by angr
from binary code, RVM can be used for binary code of all
the architectures supported by angr, including 32-bit and 64-
bit versions of ARM, MIPS, PPC, and x86. However, we use
only the 64-bit x86 (x86-64) architecture and assembly code
in this paper for ease of description.

B. Mining API Error Specifications

As we discussed in Section III, programs running on
Windows do not use error-logging functions as much as open-
sourced programs. As a result, we cannot rely on calls to error-
logging functions to identify an initial set of functions that have
error-handling code for binary code.

To find an alternative approach to identify such initial set
of functions, we conducted an informal analysis of Windows
programs and libraries to study their error-handling code. We
find that they make intense use of Windows API functions and
they usually check whether an error occurred by examining the
return value of calls to these API functions, if these functions
have return values. By studying the official documentation for
Windows API functions, we find that the vast majority of
them can return an error value, and they follow a standard
set of error return values, called system error codes [11].
We also find that similarly Linux programs and libraries rely
heavily on OS system calls and API functions implemented



by common libraries such as libc, both of which have official
documentations.

Note that previous work has also considered using docu-
mented error return values of API functions, often called an
error specification, to find error-handling code. Some exist-
ing work [21], [33] relies entirely on an error specification
provided as input. However, as far as we are aware, we are
the first to mine API specifications from API documentation,
and then uses error propagation to identify error return values
defined in a program, particularly in binary code.

Because Windows API documentations are commonly
posted online, we developed a web crawler to crawl Windows
API documentation websites and mine API error specifications.
The crawler is built on scrapy [5]. For our prototype of
RVM, our crawler supports Microsoft Windows API documen-
tation [10].

In contrast, Linux systems usually deploy API documen-
tations as man pages on users’ computers. These man pages
are usually stored in compressed format on the file system and
only temporarily uncompressed when an user views them. To
mine Linux API documentation, we developed a simple text
analysis tool that decompress each man page and searches for
documentation on API functions.

We describe our results on mining Windows and Linux API
specifications in Section VII-A.

Because API documentations are usually written in respect
to source code, using it on binary code requires to match
functions in the binary code with those described in the
documentation. We note that the goal of RVM is to harden
user applications, and the fact that it is a common practice
to ship debug symbols for not only user applications but also
even an entire OS such as Windows and different flavors of
Linux [8], [9], [13]. Some existing binary hardening tools such
as Lockdown [27] and REINS [36] also rely on debug symbols.
We also note that we only require the debug symbols to get the
mapping from function names to entry addresses, and we could
switch to a different approach to get this mapping without
relying on debug symbols.

C. Identifying Function Return Types

To locate error propagation in a target program, RVM
requires information on which functions have a pointer return
value, e.g. char «. For programs with source code, function
return types can be found in function prototype declarations.
However, stripped binary code does not have such information.

RVM takes advantage of the information on API function
prototypes mined from API documentation. It follows call
chains to identify function return types, starting with return
types of API functions and propagating these return types to
callers of these API functions in the program.

The propagation maintains a list of function return types,
which is initially filled with API function return types, and
performs an iteration on every function of the program whose
return type is unknown. In each iteration, it finds a function
that has a pointer return type if its return value is derived from
the return value of a call to another function that has a pointer
return type.

Whenever the return type of a new function has been found,
the propagation adds the function return type to the list and
starts a new iteration. The propagation terminates when no new
function return types can be found in an iteration.

D. Finding Constant Return Values

This step finds constant return values for functions in a
target program. These constant return values are then used to
find existing error-handling code in the target program. It takes
the CFG and the VEX IR code of the program as input, both
of which are generated by angr.

To find constant return values, we need to locate where
in the code a return value is assigned, which we refer to as
an assignment site, and where in the code a return value is
passed back to the caller of a function, which we refer to as
a return site. We also need to distinguish the case when a
constant value is assigned as a return value and the case when
a non-constant value is assigned.

It is common for a function to have more than one return
value. The binary code of a function is often organized in a
way to save the number of return instructions. For example,
function http_auth_basic_check can return O or 1, as
shown in Listing 3. It has one return site, a single ret
instruction at line 16, and two assignment sites, two mov
instructions with register eax as destination at line 12 and
line 14, respectively.

To find out which constant values are used as return values,
RVM links each return site with its corresponding assignment
sites using a backward intraprocedural static analysis. Each
return site can be trivially identified by looking for ret
instructions. Each assignment site is defined as the reaching
definition of register rax, i.e. the last assignment to register
rax preceding a return site in the control flow.

RVM identifies constant-value operands used in assignment
sites as return values. Because a function may assign a constant
value to a variable and then use the variable as its return value,
RVM uses the reaching-definition analysis to find if a return
value stored in a variable is indeed a constant.

For each function in the target program, this step outputs
a list of constant return sites, each of which is denoted as
a pair of a return site and its associated assignment site.
Each pair is denoted as a tuple of (return_address,
assignment_address, return_value).

We illustrate how the step works by using the example
function http_auth_basic_check in Listing 3. This step
first identifies that the function has one return site at line 16.
It then checks if there is any assignment site in the same
basic block containing line 16 and it finds that line 14 is
an assignment site, because the mov instruction at line 14
assigns a constant value 1 to register eax. After that, it iterates
through all the predecessor of the basic block containing the
return site in the control flow graph, and checks if there is
any assignment site in each predecessor. When it checks the
predecessor starting at line 10, it finds that line 12 is an
assignment site that assigns constant O to register eax.

At last, it outputs a list of constant return sites that includes
(0x4006e3, 0x4006d6, 0) and (0x4006e3, 0x4006dd,
1) for the example function http_auth_basic_check.



E. Finding Calls Followed by Constant Returns

This step finds function calls that are immediately followed
by returns of constant values. It takes the list of pairs of return
site and assignment site generated from the last step as input,
and outputs a list of function calls followed by constant returns.

We consider that a function call is followed by an assign-
ment site if two conditions are satisfied: 1) the basic block
containing the assignment site post-dominates the basic block
containing the function call and 2) the two basic blocks have
the same control dependency. We define two basic blocks
having the same control dependency if they are control depen-
dent on the same condition check and they are on the same
branch following the check. In addition, we exclude control
dependency introduced by loop conditions from consideration.

Line 20 and line 21 in Listing 1 are an example of a
function followed by a constant return, because the two lines
are control dependent on the condition check on line 19 and
they are on the if branch following the condition check.

For a given function, RVM first finds the function’s assign-
ment sites from the list of pairs of return sites and assignment
sites. It then marks each of the function’s assignment site
with the control dependency of the assignment site. After
that, it iterates through all the function calls in this function
and checks if the function call is control-dependent and,
if so, whether the function call is post-dominated by any
one of the assignment sites that has the same control de-
pendency. If it finds a function call followed by a constant
return, it adds a tuple of (function_call_address,
assignment_address, control_dependency) to its
output list.

For example, this step would check the function call at line
6 and at line 10 for function http_auth_basic_check
in Listing 3. Because the function call at line 6 is not control
dependent on any condition checks, it excludes the function
call from further consideration. For the function call at line
10, it finds that 1) the function call is control dependent on
the condition check at line 7, 2) the assignment site at line 12
post-dominates the function call, 3) the assignment site is also
control dependent on line 7, and 4) the function call and the
assignment site are on the same branch following line 7.

As a result, this step outputs a list for function
http_auth_basic_check that contains only one function
followed by a constant return denoted as a tuple (0x4006c¢5,
0x4006d6, 0x4006bb).

FE Locating Error Propagation

Following error propagation to find error return values is
critical for the coverage of SWRRs [19]. As a basis for the
step of finding error-handling code, this step takes the CFG
and the VEX IR code for the target program as input, and
outputs information on how error is propagated.

It differentiates two ways of propagating error return val-
ues: direct propagation and translated propagation. For the
former, it outputs the list of function calls whose return value
is directly propagated. For the latter, it outputs not only the
list of function calls whose return value is translated before
being propagated but also the way of the translations.

Direct propagation. A function can make a function call and
simply use the return value of the function call as its own
return value. In this case, the function making the function call
would have the same error return values as the callee function
of the function call. One example is a return statement such
as return (foo () ), in which the return value of the call to
foo is directly used as the return value of the caller function.

This step identifies direct propagation by looking for a
function call and a following return, between which there is no
modification of the function return value. The way to modify
the function return value is dependent on the ABI used by
the program. For example, register rax is commonly used as
the function return value for x86-64; so in this architecture a
modification of the return value is defined as a call to a function
that has its own return value, i.e. not a void function, or a
direct modification of register rax.

Similar to the two conditions used to find calls followed by
constant returns, described in Section V-E, this step determines
that a direct propagation must satisfy three conditions: 1) the
basic block containing a return site post-dominates the basic
block containing a function call, 2) the two basic blocks have
the same control dependency, and 3) there is no modification
to the function return value on the path from the function call
to the return site. Note that a void function might also satisfy
such conditions. But this will not affect finding error-handling
code, because any return value propagation would stop at a
void function.

Translated propagation. A function can “translate” the return
value of a function call into a different value and use it as its
own return value. A translation consists of two actions: 1) a
conditional check on the return value of a function call, and
2) a return statement that returns a constant value on one of
the branches guarded by the conditional check. As described
in Section V-D, we refer to the latter as a constant return site.

One example of such translation occurs in function
http_auth_basic_check in Listing 1, which translates
the return value NULL from the call to base64_decode
into 0. The example translation consists the conditional check
on line 19 and a return of constant O on line 21. Because the
step of identifying constant return values already takes care
of outputting constant return sites including line 21, this step
only needs to output the conditional check of the return value
of the function call at line 19. Particularly its output includes
the condition used in the conditional check.

It defines a conditional check on the return value of a func-
tion as two actions: a function call and a following conditional
check on the return value of the function call. Identifying such
conditional checks poses the following challenges particularly
for binary code:

1)  the return value can be propagated to a series of local
variables, on the last of which the check is performed;

2)  there are various ways to store a local variable, such
as in a register or on the stack;

3)  the check of the return value can be performed against
a constant value or a local variable that contains a
constant value;

4)  there are various ways to implement the same check
in binary instructions, e.g. checking if a return value



is zero can be implemented in several ways such as
test rax, rax and or rax, rax on x86-64;

5) there are various ways to assign a constant value in
binary instructions, e.g. setting register rax on x86-
64 to zero can be implemented in several ways such
as xor rax, raxand mov 0, rax

Building our analysis on VEX IR code lifted from binary
code significantly helps us address these challenges. Particu-
larly different binary instructions that are commonly used to
perform the same operations such as value comparison are
translated into the same VEX IR instruction. For example, the
x86-64 instructions test rax, raxand cmp rax, 0 are
translated into the same VEX IR instruction CmpEQ64. This
makes it easier for us to address the last two challenges.

The first three challenges could be addressed with copy
propagation and reaching definition analysis. Unfortunately, no
prior work on binary analysis can provide a variable recovery
and reaching definition analysis on binary code with the same
quality as those on source code. To be efficient and conser-
vative, our prototype of RVM performs copy propagation and
uses path-insensitive data flow analysis to locate a definition
or assignment for a register or a variable, and will terminate
the analysis if there are more than one definition to the same
register or variable and these definitions occur on different
paths. Essentially this can cause an under-approximation for
identifying translated propagation.

G. Finding Error-Handling Code

This step outputs a list of error return values for each
function in the target program. Particularly, its input includes
the error return values for API functions, the debug symbols,
the call graph of the program, the information on error propa-
gation, and the following information for each function of the
program:

e list of constant return values

e list of function calls followed by constant returns
e aCFG

From the input, it extracts the error return values for API
functions from the API documentation, and uses heuristics to
identify error-handling code in each function of the program.
The two key heuristics, error-logging functions and NULL
returns, are discussed in Section III.

It then follows the NULL return heuristic to find functions
whose return type is pointer. To ensure that NULL can be
safely returned from these functions, it verifies if any caller of
the function checks the return value against NULL. If so, it
considers NULL as an error return value for these functions.

After that, it follows the error-propagation information to
find error return values for other functions.

H. Generating SWRRs

With a given name of a vulnerable function, RVM aims to
generate one or more SWRRs to protect this function. There
are three different cases: 1) when RVM finds an error return
value for the function, RVM generates one SWRR for the
function; 2) when RVM cannot find an error return value for

the function but finds error return values for all the callers of
the function, RVM generates one SWRR for each of the caller
function; 3) when RVM cannot find an error return value for
neither the function nor all of its callers, RVM cannot generate
an SWRR to protect the function.

As described in Section II-A, an SWRR consists of a
return statement. So RVM needs to generate binary instruc-
tions corresponding to the return statement. For example, a
return statement is implemented as a ret instruction and
the return value is passed back in register eax or rax for x86
and x86-64 platforms, respectively. Depending on the calling
convention used by the program, the ret instruction may also
take a constant operand that specifies the number of bytes on
the stack that should be cleaned up.

Consequently, RVM needs information on the calling con-
vention and the error return value of the function to be
protected to generate an SWRR for a function.

Because different architectures can use different application
binary interface (ABI) for function calls, RVM needs to gener-
ate an SWRR specifically for each architecture. For example,
x86 and x86-64 use the ret instruction, while ARM uses the
bx 1lr instruction. Our current prototype focuses on x86 and
x86-64 platforms so it generates an SWRR as a mov eax or
mov rax instruction with the error return value as its operand
and a following ret instruction with an optional operand used
for cleaning up the stack.

To find out whether the ret instruction needs an operand
and what constant value should be used as the operand, one
approach is to examine the existing ret instruction in the
function. Instead, RVM chooses a simpler approach by cloning
the existing ret instruction in the function, based on the
information provided by angr on the address and length of
the ret instruction.

L. Inserting SWRRs

A common approach to insert new instructions into binary
code safely is to use a binary instrumentation tool such
as Dynlnst [16], because the insertion can involve complex
operations such as relocating existing instructions and/or data
and finding the binary file offset corresponds to the entry
address of the function, which requires taking into account
different formats of binary code, such as PE and ELF.

But we note that inserting an SWRR does not require
preserving the original instructions of the target function,
because they will not be executed anyway. As a result, an
SWRR can be inserted by overwriting the starting instructions
of the function with the instructions of the SWRR without
the need for relocation. This will work unless the size of the
function is smaller than the size of the SWRR instructions.
Because an SWRR consists of only two instructions that
occupy either six or seven bytes, it is rare to have a function
too small to hold an SWRR.

Finding the binary file offset corresponding to function
entry address can be achieved by using a brute-force approach
that searches the instructions of the function in the entire binary
file, without the need of knowing the format of the binary code.
Although this approach can be inefficient, it is applicable to
most if not all binary code formats.



VI. LIMITATIONS

SWRR is not panacea. It is difficult for SWRR to achieve
unobtrusiveness in two cases. First, an SWRR relies on existing
error handling code of a target program to achieve unobtrusive-
ness. If some existing error handling code is not well tested and
contains defects, invoking such error handling code from the
SWRR can manifest the defects. Second, an SWRR disables
the execution of an entire function. If the disabled function
happens to be on the critical path of the target program, the
SWRR will disable critical functionality.

RVM relies on API error specifications automatically
mined from online API documentation and local man pages
to identify error return values that can be used to generate
SWRRs. While the online documentation and local man pages
are usually up-to-date, they might be inconsistent with the
version of the API functions installed on a particular computer.
Sometimes they might not get updated as fast as new versions
of API functions are released. Although this kind of incon-
sistency can cause issues for developers who work with these
API functions, we note that RVM only requires error return
values of these API functions, which are rarely changed in
practice.

Our prototype of RVM assumes that the target binary
does not use self-modifying code and is unpacked, so that it
could use a straightforward brute-force approach to locate the
instructions of a function in the binary file without taking into
account different formats of binary files. In our future work,
we plan to use a more reliable approach that follows the format
of binary files.

VII. EVALUATION

In this section, we first present our results of mining
API error specifications from online documentations, and then
report the coverage of SWRRs produced by RVM. We focus
on the coverage of SWRRs produced by RVM, because the
security guarantee of SWRRs is not affected by whether the
SWRRs are produced in the form of binary code or source
code. After that, we illustrate how SWRRs instrumented by
RVM mitigate real-world vulnerabilities using case study.
Finally, we present the performance of RVM on analyzing
binaries, generating SWRRs, and instrumenting the SWRRs
into binaries.

For all our evaluations, we use a workstation that has an
Intel Core 17-7700 CPU running at 3.60GHz and 16GB RAM.
The workstation runs Ubuntu 16.04 desktop operating system
on a 2TB 7200 RPM SATA hard drive.

A. API Error Specifications

As described in Section V, we build a web crawler to crawl
online Windows API documentations and a text analyzer to
mine local Linux man pages to mine API error specifications.
In this section, we present our results on mining API error
specifications.

Note that we mine error specifications directly from either
online API documentations or local man pages, rather than
header files. However, these API documentations are indeed
generated by software vendors from header files, as described
in the documentations. So we count the number of header files

API Interface # Sources | # Category | # Functions | # Header Files

Windows 22,973 707 15,359 5,071

Linux 5,142 N/A 3,455 385
TABLE 1. API ERROR SPECIFICATIONS MINED BY RVM. FOR

WINDOWS, THE COLUMN “SOURCES” REFERS TO URLS. FOR LINUX, IT
REFERS TO MAN PAGES.

CVE# OS App. Binary Size # Func.
CVE-2006-3730 | Windows IE webvw.dll 133KB 585
CVE-2006-4071 | Windows [N gdi32.dll 281KB 1,499
CVE-2011-4362 | Linux lighttpd | mod_auth.so 76KB 75

TABLE II. BINARIES THAT HAVE REAL-WORLD VULNERABILITIES.

from which these API documentation are generated by using
the information in the documentations. This gives us a rough
idea that how many header files need to be mined to retrieve the
same information if we mine the header files for API functions.

As shown in Table I, our web crawler visited 22,973 URLs
and identified the error specification for 15,359 Windows API
functions, which belong to 707 different categories according
to the documentation. By contrast, our text analyzer searched
through 5,142 man pages and found the error specification
for 3,455 Linux API functions. Mining from these URLs and
man pages can be considered as equivalent from 5,071 and
385 header files, respectively.

B. Coverage

We use real-world vulnerabilities in popular Windows and
Linux applications for our evaluation. For each vulnerability,
we choose to use the particular binary that contains the
vulnerable function to apply SWRRs. The vulnerabilities are
listed in Table II, which also shows the type of operating
system (OS), the name of the application and the binary, the
size of the binary and the number of functions that the binary
has.

The results on the coverage of SWRRs produced by
RVM for these binaries are shown in Table III. The column
“Protected” shows the percentage of the functions that can
be protected by SWRRs. The column “APL.” and “Pointer.”
show the percentage of the functions that whose error-handling
code are identified using API error specifications and pointer
return types, respectively. The column “Prop.” presents the
percentage of functions whose error return value is identified
via following the error propagation in the binary. Lastly the
column “Indirect” presents the percentage of functions that are
protected indirectly by SWRRs in all of their caller functions.

We can see that on average RVM can apply SWRRs to
69.3% of the functions in these binaries. Using API error
specifications and pointer return types allows RVM to identify
8.8% and 0.1% of the functions respectively. While following
error propagation helps identifying the error return values for
22.3% of the functions, 38.0% of the functions have to be
protected by SWRRs in their caller functions.

C. Case Study

We use an Internet Explorer vulnerability CVE-2006-
3730 [2], shown in Table II, as a case study to illustrate how



Binary Protected API Spec. Pointer. Prop. Indirect
webvw.dll 55.0% 0.7% 0.3% 36.2% 17.8%
gdi32.dll 75.5% 16.4% 0.0% 30.8% 28.3%
mod_auth.so 77.3% 9.3% 0.0% 0.0% 68.0%
AVERAGE 69.3% 8.8% 0.1% 22.3% 38.0%
TABLE III. COVERAGE OF SWRRS PRODUCED BY RVM.

RVM can be used to rapidly provide protection for users of
the unpatched Internet Explorer.

This is an integer overflow vulnerability in the setSlice
method of an ActiveX object contained in the webvw.d1l1l
shared library used by Internet Explorer. By crafting a mali-
cious web page that contains a call to this vulnerable method
with a specific argument, an adversary can trigger the vulner-
ability and execute arbitrary code with the permissions of the
user when the user browses the web page with Internet Ex-
plorer. Because exploits for this vulnerability had been released
before a patch was available, users and system administrators
were advised to apply a configuration workaround that disables
the use of this vulnerable ActiveX control completely.

When RVM is used to apply SWRRs to mitigate the
vulnerability, it first finds that setSlice calls a Windows
API function DSA_Set Item, which returns TRUE on success
and FALSE on failure, and setS1lice uses the return value
from the API function as its own return value when the API
function returns FALSE. As a result, RVM determines that
FALSE or 0 is also an error return value for setSlice.

Because this function uses the stdcall calling conven-
tion, it must free up the stack space allocated by its caller
when it returns to the caller. However, RVM does not need to
concern about the calling convention in generating the SWRR
for this function, because it uses instruction cloning to copy
the ret instruction of the function as that of the SWRR. It
then synthesizes a mov 0, eax instruction that assigns 0
(FALSE) as the function’s return value, and appends the cloned
ret instruction of the function as an SWRR for this function,
as shown below.

mov 0, eax
ret 0x38

After this, RVM locates the start of the function in the
binary file by searching for the first 32 bytes of the instructions
of the function in the binary file. Once it locates the offset of
the instructions, i.e. the start of the function, it overwrites the
start of the function with the instructions of the SWRR after
making a backup of the original binary file.

D. Performance

We measure the execution time that RVM takes to analyze
a binary, generate an SWRR, and instrument the SWRR into
the binary. The results are presented in Table IV.

We separate the execution time of the underlying angr
frame work and RVM to find out how much execution time
does RVM add on top of the execution time of angr. The
column “angr” contains the execution time for angr to gen-
erate the underlying data structures used by RVM, including
the loading of a binary code and the construction of a CFG.
The column “Phase 1” shows the execution time of RVM’s
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Binary angr | Phase 1 Phase 2 Phase 3 & 4 Total
webvw.dll 15s 394s 0.3s 20s 429.3s
gdi32.dll 16s 3107s 0.6s 26s | 3149.6s
mod_auth.so 0.7s 13s 0.1s Is 14.8s
AVERAGE 10.6s 1171.3s 0.3s 15.7s 1197.9s
TABLE IV. PERFORMANCE OF RVM: ALL EXECUTION TIME IS

MEASURED IN SECONDS.

phase 1, which is in charge of collecting various information
from a binary. The column “Phase 2” shows the execution
time of phase 2, which is responsible of identifying error return
values used by the binary. The column “Phase 3 & 4” includes
the execution of both phase 3 and phase 4 that generates and
instruments SWRRs. Finally, the column “Total” presents the
total execution time for all phases of RVM. All the execution
times are reported in seconds.

As we can see, phase 1 takes the vast majority of the total
execution time, as it performs intense program analysis on a
binary to collect information required to find error-handling
code. In total it can take RVM approximately an hour to
apply an SWRR to mitigate a vulnerability. However, the user
does not need to interfere with the execution of RVM after
starting it, because all the phases are completely automated.
Our prototype has not been optimized, and we believe its
performance can be considerable improved after optimization.

VIII. CONCLUSION

This paper presents RVM, an approach that rapidly mit-
igates un-patched vulnerabilities in binary code using static
program analysis and binary rewriting. RVM applies Security
Workarounds for Rapid Response (SWRR) to gracefully dis-
able the execution of vulnerable functions in order to prevent
the vulnerabilities from being exploited. From our evaluation
on binaries that contain real-world vulnerabilities, we find that
RVM can apply SWRRs to 69.3% of the functions of a binary
on average. This is comparable to the coverage achieved by
prior work that applies SWRRs on source code.
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