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Abstract—Many vulnerability detection tools have been devel-
oped to detect vulnerabilities, but most of them only offer basic
information for each detected vulnerability, which is insufficient
for developers to reproduce and repair the vulnerability. We
present an approach called SPDetect that uses safety properties
to detect vulnerabilities and provides semantic information,
including source code program expressions, about detected vul-
nerabilities. Each safety property defines the condition violated
by one type of vulnerabilities. SPDetect uses symbolic execution
to explore program paths and detect vulnerabilities by checking
any violation of safety properties. To guide the symbolic execution
to deep program paths that are more likely to contain vulnerabil-
ities, we developed the novel technique of error path termination.
We have designed and implemented a prototype of SPDetect for
detecting vulnerabilities in C/C++ programs. Our evaluation of
SPDetect on real-world programs shows that SPDetect can can
detect vulnerabilities effectively and efficiently.

Index Terms—Software vulnerability, vulnerability detection,
symbolic execution, safety property, program analysis

I. INTRODUCTION

Vulnerability detection is essential to address software vul-
nerabilities, which exist in all kinds of software and are
often exploited by real-world cyberattacks. As an example,
the recent data breach of the private information of hundreds
of millions of Facebook users [1], the LockFile ransomware
attack [2], and the series of attacks on U.S. Federal government
computer systems [3], [4] all took advantage of vulnerabilities.

For decades, a large number of tools have been developed
to detect vulnerabilities [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]. Some of them have been routinely used
by major software vendors, in particular Google, Microsoft,
and Adobe, on their software products.

After a critical vulnerability is detected by a vulnerability
detection tool, the software vendor has to mitigate or repair the
vulnerability in a timely manner, which usually involves re-
producing, triaging the vulnerability, and developing the patch
for the vulnerability. These tasks are often time-consuming
and labor-intensive, albeit techniques have shown promising
results in automated vulnerability mitigation and repair [17],
[18], [19], [20], [21], [22], [23]. To accomplish these tasks
rapidly, it requires vulnerability detection tools to provide as
much information as possible on detected vulnerabilities. For
example, the semantic information about the cause and effect
of a vulnerability and a proof-of-concept exploit to trigger the
vulnerability will be invaluable to software vendors.

However, most vulnerability tools can provide only lim-
ited information about the vulnerabilities they detect. This
kind of information usually includes merely the location of
the vulnerable code manifesting a vulnerability, typically the
statement or instruction causing a software fault, the last step
involved in the triggering of the vulnerability, and perhaps
the call stack when the statement or instruction is being
executed. It lacks high-level semantic information about the
cause and effect of the vulnerability. With only the basic
information, developers usually have to manually reproduce
and debug the vulnerability to gather semantic information on
the vulnerability, in order to fix the vulnerability correctly.

In this paper, we present our work that automatically
detects vulnerabilities, produces a proof-of-concept exploit to
reproduce each detected vulnerability, and provides semantic
information, i.e. source code program expressions, involved
in the vulnerability. We refer to our work as semantic-aware
vulnerability detection.

Our work is inspired by the concept of safety properties
used by Senx [21] to automatically generate vulnerability
patches. A safety property is defined in terms of abstract
expressions denoting the condition that will prevent a type
of vulnerabilities from being triggered. The safety property
for a buffer overflow vulnerability, for example, is defined
as a check between the abstract expression denoting the
range of the addresses accessed by a memory access and the
abstract expression denoting the size of the buffer targeted
by the memory access. A safety property is violated when a
vulnerability corresponding to the safety property is triggered.
To generate vulnerability patches, the abstract expressions in
a safety property is automatically translated into different
program expressions for different target programs.

While Senx generates patches for known vulnerabilities, our
goal is to detect undiscovered vulnerabilities. To generate a
patch for a vulnerability, Senx requires a user to provide an
exploit for triggering the vulnerability. On the contrary, our
work automatically produces a proof-of-concept exploit for
each detected vulnerability.

Our work uses symbolic execution to explore the program
paths and detect vulnerabilities by checking safety properties.
It uses symbolic input to execute a target program and
produces an exploit by concretizing the symbolic input that
triggers the vulnerability. To generate program expressions
most relevant to the vulnerability, it translates the abstract978-1-6654-9952-1/22/$31.00 ©2022 IEEE



expressions related to the corresponding safety property into
program expressions.

During the symbolic execution, our work checks any viola-
tion of safety properties to determines whether a vulnerability
is detected. When a safety property is violated, it deems that
a vulnerability is detected and produces a concrete input, i.e.
exploit, based on the path constraints leading to the code that
violates the safety property.

One challenge of our work is to develop an efficient search
strategy for the symbolic execution. The search strategy is
critical for detecting vulnerabilities efficiently. It should guide
the symbolic execution to focus on deep program paths that
are likely to contain vulnerabilities. First, any program with
a decently complex code base will have an infinite number
of possible program paths, mainly due to the existence of
loops whose number of iterations is determined by values
derived from user input. As a result, it is preferable to
give higher priority to the program path more susceptible to
have vulnerabilities. Second, many programs expect a specific
format for their input and they will terminate early if they
consider an input invalid because the format of the input does
not obey the expected format. Without any constraints on the
symbolic input, the symbolic execution will spend most of the
time producing inputs considered invalid by target programs
and execute only shallow program paths.

We address the challenge with two techniques: error path
termination and input preconditions. Both of them are for
the purpose of avoiding shallow program paths that terminate
program execution early.

Error path termination directs symbolic execution to skip the
program branches that will lead to early program terminations,
such as the ones due to invalid input formats. With static anal-
ysis, our work identifies error handling code in target programs
and provides the information to the symbolic execution engine,
which terminates any execution path reaching an error path.

The input preconditions enforce specific constraints on
symbolic inputs to make the symbolic inputs conform to the
common input formats expected by target programs. Our input
preconditions, combined with the input preconditions proposed
in the prior work [14], enables symbolic execution to bypass
the format check code in target programs and proceed to deep
program paths.

This paper makes the following main contributions:
• We propose an approach to automatically detect vulner-

abilities and provide program expressions involved in
each detected vulnerability. Our approach uses symbolic
execution to execute target programs and detects vulnera-
bilities by checking for any violation of safety properties.

• We develop a technique called error path termination and
two input preconditions to improve the performance of
the symbolic execution in detecting vulnerabilities.

• We have implemented our approach in a prototype called
SPDetect. We describe our design and implementation in
the paper.

• Our evaluation on SPDetect shows that our approach can
effectively and efficiently discover different types of real-

world vulnerabilities.
The structure of paper is as follows. We present the

background and related work in Section II. We discuss the
motivation and challenges in Section III. Section IV illustrates
a typical usage of our approach. We describe our design in
Section V, present our evaluation in Section VI, and discuss
the limitation of our work in Section VII. Finally we conclude
in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Safety Properties

Each safety property corresponds to a type of vulnerabilities.
It abstracts the intrinsic condition that prevents a type of
vulnerabilities from being triggered. It is defined as an abstract
boolean expression that can be evaluated when translated
to concrete program variables or expressions in a program.
We describe the three types of safety properties currently
supported by SPDetect.

Buffer overflows. A buffer overflow happens when a sequence
of memory accesses traversing a buffer crosses the boundary
of the buffer, i.e. the lower bound or the upper bound of the
buffer. The safety property for buffer overflows involves two
abstract expressions: a memory access and a buffer. A memory
access corresponds to a pointer dereference or an access to an
array element.A buffer refers to any bounded memory region,
which may include arrays, structs, or class objects.

Bad casts. Many times a programmer mistakenly casts a
pointer to a type that is incompatible with the object pointed
to by the pointer. A bad cast occurs when such a pointer is
used to perform memory access. The safety property for bad
casts can detect bad casts for structs and objects.

Integer overflows. An integer overflow refers to the case when
an arithmetic operation produces a value larger or smaller than
what can be represented by the data type of the operation or the
variable in which the result of the operation will be stored. An
integer overflow vulnerability corresponds to two cases: 1) the
result of an integer overflow is used as the allocation size for
a memory allocation and 2) the result of an integer overflow
is used as a predicate that controls the execution of a sensitive
operation.

B. Vulnerability Detection

Vulnerability detection tools use a myriad of techniques
including a variety of dynamic analysis, such as symbolic
execution [14], fuzzing [7], and taint analysis [6], and different
types of static analysis [12], [24]. In this section, we focus on
symbolic execution, which is the basis of our work.

Symbolic execution runs target programs and abstracts
program data as symbolic values during program executions so
that it can automatically produce test cases to detect bugs [5].
The symbolic values constitute the program path constraints
for each program execution, which are converted to concrete
input data by using constraint solvers.

EXE [25] is a pioneering work in symbolic execution. It
runs a target program with symbolic input and uses symbolic



constraints on the input to replace operations involving the
data derived from symbolic input. When a conditional branch
is encountered, it forks the execution to two executions: one
follows the True branch if the predicate for the conditional
statement can evaluate to a True value and the other one
follows the False branch if the predicate can evaluate to a
True value.

A main challenge of symbolic execution is path explo-
sion [26]. When symbolic execution explores all possible exe-
cution paths of a program, branches in the program will cause
the number of paths to grow exponentially and severely limit
the scalability of symbolic execution. Many approaches have
been proposed to address the issue of path explosition [27],
[14], [28], [29], [30], [31], [32].

Like our error path termination, some techniques avoid exe-
cuting uninteresting paths [14], [27], [29]. AEG [14] proposes
the use of input preconditions to avoid exploring execution
paths reached by invalid inputs. The input preconditions can
considerably reduce the number of execution paths, at the
expense of increased the cost of constraint solving. Our error
path termination focuses on the effect of invalid inputs and
does not increase the cost of constraint solving.

Chopped symbolic execution [27] allows users to manually
specify uninterested parts of the target program code that
should be skipped during execution. To ensure the integrity
of symbolic execution, it lazily executes the skipped code
when they are needed by the rest of the code. Our error
path termination focuses on one particular type of uninterested
code, error handling code, and automatically identifies error
handling code in target programs.

Some techniques [31], [32] aim to prune similar execution
paths that will not allow symbolic execution to reach more
interesting execution paths. The challenge of these techniques
is to define and identify similar execution paths effectively and
efficiently.

III. PROBLEM DEFINITION

To aid developers in fixing vulnerabilities, simply reporting
the location of the involved statements is often not enough.
It is important for vulnerability detection tools to provide
detailed information on each detected vulnerability. Particu-
larly the program expressions involved in the manifestation
of a vulnerability, vulnerability-relevant code, and an input to
reproduce the vulnerability, proof-of-concept exploit or exploit,
are critical information required for fixing the vulnerability.

For instance, typically a buffer overflow vulnerability is
fixed in three different approaches: restricting the range of
the memory access to the buffer, accommodating the buffer
size based on the range of the memory access, and preventing
the memory access to the buffer if the memory access will
overflow the buffer. All fix approaches require the information
on the statement allocating the buffer, the allocation size,
the statement accessing the buffer, and the range of memory
access.

We use the code in Listing 1 as a running example to
illustrate such critical information required to fix vulnerabil-

1 i n t main ( . . . ) {
2 . . .
3 i f ( ( pszMai lRoo t = SysGetEnv (MAIL_ROOT) ) == NULL)

{
4 f p r i n t f ( s t d e r r , " u n d e f i n e d v a r i a b l e : %s \ n " ,

MAIL_ROOT) ;
5 re turn 1 ;
6 }
7 . . .
8 FILE * p M a i l F i l e = fopen ( s z M a i l F i l e , "wb" ) ;
9 i f ( p M a i l F i l e == NULL) {

10 p e r r o r ( s z M a i l F i l e ) ;
11 re turn 5 ;
12 }
13 i n t bRcp tSource = s t r n i c m p ( s z B u f f e r , "To : " , 3 ) ==

0 | |
14 s t r n i c m p ( s z B u f f e r , " Cc : " , 3 ) == 0 | |
15 s t r n i c m p ( s z B u f f e r , " Bcc : " , 4 ) == 0 ;
16 i f ( bRcp tSource )
17 E m i t R e c i p i e n t s ( . . . ) ;
18 . . .
19 }
20
21 i n t E m i t R e c i p i e n t s ( . . . ) {
22 . . .
23 f o r ( ; p s z C u r r != NULL && * p s z C u r r != ' \ 0 ' ; ) {
24 char * pszAt = s t r c h r ( pszCur r , '@ ' ) ;
25 char s z A d d r e s s [ 2 5 6 ] = " " ;
26
27 i f ( pszAt == NULL) break ;
28 p s z C u r r = AddressFromAtPt r ( pszAt , szAddress ,

s i z e o f ( s z A d d r e s s ) ) ;
29 . . .
30 }
31 . . .
32 }
33
34 char * AddressFromAtPt r ( . . . ) {
35 . . .
36 f o r ( ; (* pszEnd != ' \ 0 ' ; pszEnd ++)
37 i f ( s t r c h r ( "<> \ t , \ " : ; ' \ r \ n " , * pszEnd ) != NULL

)
38 break ;
39 i n t iAddrLeng th = ( i n t ) ( pszEnd − p s z S t a r t ) ;
40 s t r n c p y ( pszAddress , p s z S t a r t , iAddrLeng th ) ;
41 . . .
42 }

Listing 1: Example vulnerability, adopted from CVE-2004-
2943 in XMail.

ities. The code is adopted from a real-world buffer overflow
vulnerability in a mail server, XMail. The vulnerability allows
an attacker to hijack the execution of the mail server.

The code shows the code in three functions, main,
EmitRecipients, and AddressFromAtPtr, that are
responsible of extracting the list of email addresses from the
user input. The code allocates a buffer at line 25 in function
EmitRecipients and the buffer overflow occurs at line 40
in function AddressFromAtPtr when the call to strncpy
copies more data than expected into the memory buffer pointed
to by the pointer pszAddress.

To fix this vulnerability, a developer needs the program
expressions for the buffer allocation size, which is 256
as shown on line 25, and the range of memory access to
the buffer, which is variable iAddrLength or expression
pszEnd−pszStart on line 39, besides the location of the
buffer allocation statement and the memory access statement.



A proof-of-concept exploit, the user input triggering the
vulnerability, is also needed by the developer to reproduce
the vulnerability and test the fix. The exploit for this vul-
nerability must cause the program execution to reach func-
tion AddressFromAtPtr, which is invoked by function
EmitRecipients and function main in turn. We can see
that the exploit has to starts with "To:", "Cc:", or "Bcc:" so
that main will call EmitRecipients, as shown in line
13–15. To be able to call AddressFromAtPtr, the exploit
must also contain a ’@’, checked at line 24 and 27. Finally to
overflow the buffer, the exploit should not contain characters
such as ’<’, ’>’, and ’"’, which are considered as separators,
as shown on line 37–38.

IV. SPDETECT

We design an approach, called SPDetect, to detect vulner-
abilities and address the challenges presented in Section III.
SPDetect symbolically executes the source code of a target
program to identify vulnerabilities. It works on the LLVM
bitcode of the target program. This section demonstrates a
typical usage of SPDetect in detecting vulnerabilities.

Our target program is XMail [33], a popular mail server
written in 33,542 lines of C++ source code. A user can use
SPDetect to detect vulnerabilities in XMail in a few steps:

First, the user needs to build the LLVM bitcode from the
C++ source code of the program. Second, she can create
the safety properties corresponding to the vulnerability types
to be detected or use the default safety properties. Third,
she runs SPDetect on the bitcode and specifies the safety
properties to be used and that a symbolic input should be
used for the program. Fourth, SPDetect explores the program
paths and detects the buffer overflow vulnerability illustrated
in Listing 1. Lastly, SPDetect produces a concrete input for
triggering the vulnerability and the detailed information about
the vulnerability to help the user fixing the vulnerability, such
as the involved program statements and expressions.

SPDetect executes the LLVM bitcode of the program. When
it reaches each conditional statement in the program, it checks
whether the predicate evaluated by the conditional statement is
a symbolic value. If so, it uses a constraint solver to compute
the satisfiability of the symbolic value and diverts program
execution to the branches based on whether the symbolic value
can be evaluated to True, False, or either.

When the program execution reaches the call to strncpy
at line 40 and triggers the violation of the safety property for
buffer overflows while executing strncpy, SPDetect creates
a concrete input that satisfies the constraints that lead to
the call. The input is 260 characters long and satisfies the
requirements of starting with "To:", containing an ’@’, not
containing any special characters such as ’<’, ’>’, and line
feed.

Based on the violated safety property, it also translates
the abstract expressions involved in the safety property into
the corresponding program expressions. For example, it will
translate buffer_size into 256 and access_range into

S a f e t y P r o p e r t y : b u f f e r o v e r f l o w
Access S t a t e m e n t : l i n e 40 , AddressFromAtPt r
Access Range : iAddrLength ,

AddressFromAtPt r
B u f f e r S i z e : 256 , E m i t R e c i p i e n t s
B u f f e r A l l o c a t i o n : l i n e 25 , E m i t R e c i p i e n t s

Listing 2: Semantic Information for CVE-2004-2943

iAddrLength. It will report that the buffer allocation oc-
curred at line 25 and the memory access was invoked from
line 40, as shown in Listing 2.

Using the input and the report generated by SPDetect, a
developer can debug the program with the input and produce
a patch that ensures iAddrLength, the length used by
strncpy, is not larger than 256, the buffer size.

V. DESIGN

In this section, we present the design of SPDetect, our
approach to detect vulnerabilities and provide an exploit and
program expressions denoting the cause and effect of each
detected vulnerability.

Program

Input 
Precondition

Error Path 
Termination

Executing 
Program

Concrete 
Input

Program 
Expressions

Identifying 
Error Handling 

Code

Checking 
Safety 

Properties

SPDetect

Fig. 1: Workflow of SPDetect.

A. Overview

SPDetect takes the source code of a program as input and
uses symbolic execution to explore the program paths of the
source code to detects vulnerabilities. When a vulnerability
is detected, it produces a concrete input (exploit) to trigger
the vulnerability and the program expressions representing
the cause and effect of the vulnerability. Figure 1 shows the
workflow of SPDetect.

The symbolic execution performed by SPDetect checks
safety properties to determine whether a vulnerability is trig-
gered. A safety property defines the condition when a type of
vulnerabilities will not occur, in terms of abstract expressions.
SPDetect translates the abstract expressions involved in a
safety property into program expressions for the program
being executed, and evaluates these program expressions dur-
ing program execution to check whether a safety property is
violated. If so, SPDetect considers a vulnerability is detected.

As vulnerabilities typically exist in deep program paths,
SPDetect guides the symbolic execution to focus on deep pro-
gram paths to improve the efficiency of vulnerability detection.



SPDetect leverages two techniques: error path termination and
input precondition. Both of them allow the symbolic execution
to avoid the shallow program paths that terminates program
execution due to invalid inputs.

B. Checking Safety Properties

SPDetect checks the violation of safety properties during
the symbolic execution of a target program in order to detect
vulnerabilities. A safety property is defined for the purpose of
detecting a type of vulnerabilities, such as buffer overflows,
integer overflows, and bad casts.

Each safety property is associated with one ore more
operations of the program. A safety property is checked when
SPDetect executes its associated operations. For example, the
safety property for buffer overflows is associated with all
memory access because the safety property denotes that the
range of a memory access should not exceed the size of the
buffer targeted by the memory access. Therefore SPDetect
checks the safety property for buffer overflows when executing
each memory access.

SPDetect checks the violation of a safety property by evalu-
ating the safety property. If the safety property is evaluated to
be True, the safety property is not violated. If the safety
property is evaluated to be False, the safety property is
violated.

Because a safety property is defined in abstract expressions,
SPDetect needs to translate these abstract expressions into
corresponding program values to evaluate them. It follows the
description in Table I to perform the translation.

TABLE I: Abstract Expression in Safety Properties

Expression Description
address() the memory address to be accessed
buffer_lower() the lower bound address of a buffer
buffer_upper() the upper bound address of a buffer
buffer_freed() Is the buffer freed?
arg_from_input(F, i) Is the call argument #i for

function F derived from the input?
arg_overflowed(F, i) Is the call argument #i for

function F an overflowed integer?
predicate_overflowed() Is the predicate evaluated

to an overflowed integer?
cast_struct() Is the pointer cast to a struct?

SPDetect produces a concrete input leading the program
execution to the code causing the violation when it detects a
violation of a safety property. It uses the Z3 constraint to create
the concrete input that satisfies all the path constraints at the
code. It also generates a report listing the program expressions
involved in evaluating the safety property.

Assume we use SPDetect to detect vulnerabilities in the pro-
gram presented in Listing 1. SPDetect will detect a violation
of the safety property for buffer overflows when it executes
the code of function strncpy, which is called from line 40.
It then uses the constraint solver to find a solution that satisfies
all the path constraints for the path reaching line 40.

SPDetect also translates the abstract expressions relevant to
the safety property into source code program expressions in a
report. We describe the report in details in Section VI-D.

C. Error Path Termination

We observe that many programs reject invalid inputs and
terminate execution early. In other words, only shallow pro-
gram paths are executed in the face of invalid inputs. Because
these program paths are shallow, they have low probability to
contain vulnerabilities.

One approach to address this issue is to ensure the inputs
generated by symbolic execution are always in valid formats.
The format specification may be translated into constraints that
can be applied to symbolic inputs. But complicated format
specifications will lead to complicated constraints that are
challenging for a constraint solver to solve.

Instead, we choose to guide the symbolic execution to avoid
executing shallow program paths that handles the errors caused
by invalid inputs. This requires us to identify such program
paths and direct the symbolic execution at runtime.

First, we use static analysis to identify error handling code
because invalid inputs usually raise certain errors. We build
our static analysis on Talos [18]. Talos uses heuristics to
identify the set of basic error return values and then follows
the propagation of errors in the call chain to expand the set
of error return values. For each identified error handling code,
Talos provides the function return value returned by the error
handling code and the predicate evaluated by the conditional
statement that governs the execution of the error handling
code. We extend Talos to return the source code line of the
start of the error handling code.

Second, our approach directs the symbolic execution to
avoid executing error handling code. As error handling code
is usually implemented in the form of a conditional statement
such as an if statement with one of the branches leading
to the error handling code, i.e error path, we terminate any
execution path that reaches the start of an error path. This
technique is called error path termination.

We use the code in Listing 1 to illustrate how this works. Be-
fore the symbolic execution for this program starts, SPDetect
statically identifies that the then branches starting at line 4
and at line 10 are the start of error paths. As a result, SPDetect
will terminate any execution path that reaches line 4 or line 10.
This way SPDetect cut off the program path that propagate the
error. Otherwise the symbolic execution will follow the error
path to propagate the error to all the caller functions until the
program terminates.

D. Input Precondition

As discussed in Section V-C, it is challenging for a con-
straint solver to solve complicated constraints. However, sim-
ple constraints can be solved efficiently and applying them
on symbolic inputs can improve the overall performance of
symbolic execution, as shown by prior work such as AEG [14].

This kind of constraints applied to symbolic inputs are
called input preconditions because they are applied before
the symbolic execution starts. AEG uses two kinds of input
preconditions: known length, which ensures string inputs to
have a fixed length, and known prefix, which ensures inputs
to always start with a prefix.



As a complement of error path termination, we apply input
precondition to guide the symbolic execution to deep program
paths. This is mainly because a program does not necessarily
treat all invalid inputs in the same way. Some invalid inputs can
directly lead to error handling code, while less severe invalid
inputs can be ignored silently.

Besides the input preconditions proposed by AEG, we
developed two input preconditions, infix and exclusion, to
specify the bytes that must be included in inputs and the bytes
that must not be included in inputs, respectively.

We note that users do not need to examine the source code
of the program to use these preconditions. All the three re-
quirements are described in the document of the program [34]
or in the RFC 5332 specification that specifies the Internet
message format [35]. It is straightforward for a user to create
these preconditions based on either one of these documents.

VI. EVALUATION

In this section, we evaluate the effectiveness and perfor-
mance of SPDetect in detecting vulnerabilities. We evaluate
SPDetect with five popular open-source C/C++ programs.
First, we describe the setup of the environment of our ex-
periments. Second, we measure the effectiveness of SPDetect
with its result on detecting real-world vulnerabilities. We also
measure its performance by the time it takes to detect these
vulnerabilities. Third, we evaluate the effect of our error path
termination, and the infix and exclusion input preconditions.
Last, we demonstrate the benefits of providing semantic infor-
mation for detected vulnerabilities with a case study.

A. Experimental Setup

We implement the prototype of SPDetect in C/C++ by ex-
tending KLEE [36], a state-of-art symbolic execution engine.
We use the GiNaC symbolic computation framework [37] to
evaluate safety properties. For constraint solving, we use the
Z3 constraint solver [38]. We perform all our evaluations on
a workstation equipped with a 32-core 2.2GHz AMD Ryzen
Threadripper processor and 128 GB memory. The workstation
runs 64-bit Ubuntu 20.04.

B. Vulnerability Detection

We found these five programs from popular online vul-
nerability databases and exploit databases including CVE
Details [39], BugZilla [40], and Exploit Database [41]. These
programs belong to a variety of types, including email server,
OCR tool, image processing tool, Internet data transfer tool,
and data compression tool. Their size varies from 1,436 to
53,592 lines of source code. We list these programs in Table II.
For each program, the column “#SLOC” is its number of
C/C++ source code lines and the column “#Bitcode” is its
number of LLVM bitcode instructions.

TABLE II: List of Evaluated Programs.

Program Type Version #SLOC #Bitcode
XMail Email Server 1.27 53,592 38,856
gocr OCR Tool 0.40 21,595 151,775
autotrace Image Processing Tool 0.31.1 12,237 122,830
socat Internet Data Transfer

Tool
1.4 17,923 199,317

ncompress Data Compression Tool 4.2.4 1,436 33,476

We run SPDetect on each of these programs to detect
vulnerabilities. We use the DFS search strategy and the Z3
constraint solver. Table III lists the nine vulnerabilities that are
successfully detected by SPDetect. The column “Vuln.Type”
describes the type of each vulnerability and the column
“Det.Time” presents the time for the first occurrence of
SPDetect detecting each vulnerability, measured in seconds.

TABLE III: List of Detected Vulnerabilities.

Vulnerability CVE# Vuln. Type Det. Time
XMail CVE-2005-2943 buffer overflow 102
gocr-1 CVE-2005-1141 integer overflow 26
gocr-2 CVE-2005-1142 integer overflow 53
autotrace-1 CVE-2017-9166 buffer overflow 17
autotrace-2 CVE-2017-9169 buffer overflow 12
autotrace-3 CVE-2017-9182 integer overflow 9
socat CVE-2004-1484 buffer overflow 30
ncompress-1 CVE-2001-1413 buffer overflow 34
ncompress-2 CVE-2006-1168 buffer overflow 305

Six of the vulnerabilities are buffer overflows and three of
them are integer overflows. No bad casts are detected in this
experiment. On average it takes SPDetect 65 seconds to detect
a vulnerability. All the nine vulnerabilities are detected within
305 seconds.

C. Error Path Termination and Input Precondition

We conducted experiments to show the effect of our error
path termination and input precondition on the performance of
SPDetect in detecting vulnerabilities. We compare SPDetect
the prefix and length input preconditions proposed by AEG,
as well as KLEE. Like AEG, we set the maximum symbolic
execution time to 10,000 seconds and terminate the symbolic
execution after the maximum time is reached.

Our result is presented in Figure 2. Each bar represents
the detection time when a particular technique is applied. The
“Prefix + Length” bar shows the detection time when only
the prefix and length input preconditions are applied. The
“SPDetect” bar presents the detection time when our error
path termination and input precondition are applied on top of
the prefix and length input precondition. The “Concolic” bar
presents the detection time with a concrete proof-of-concept
exploit. The techniques that fails to detect a vulnerability
within the time limit are shown as a bar of maximum time.
As we can see, KLEE fails to detect any vulnerabilities within
the specified time limit.

Two of the gocr vulnerabilities cannot be detected within
the time limit by using only the prefix and length precon-
ditions. With error path termination and input precondition,
they can be detected in 26 and 53 seconds respectively. This
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shows the two preconditions are necessary for detecting some
vulnerabilities.

The XMail vulnerability can be detected with the prefix and
length preconditions in 132 seconds. On the contrary, SPDetect
detects it in 102 seconds with the help of the infix and
exclusion preconditions. This indicates that they can improve
the performance of vulnerability detection, although they add
more complexity in constraint solving.

One of the ncompress vulnerabilities is detected with the
prefix and length preconditions in 17 seconds. However it takes
34 seconds when the exclusion precondition is also applied. In
this case, the overhead of the exclusion precondition outweighs
its benefits.

For the three autotrace vulnerabilities, SPDetect can
detect them in about the same time as the concolic executions
using concrete proof-of-exploits. This demonstrates that the
error path termination and the input precondition can remark-
ably improve the performance in vulnerability detection.

D. Benefits of Semantic Information

In this section, we illustrate the benefits of semantic in-
formation using our running example, shown in Listing 1,
and the corresponding report generated by SPDetect, shown
in Listing 2.

The report shows the type of the violated safety property,
e.g. buffer overflow. It also lists the program expressions
involved in the buffer overflow, including the location of the
statement that accesses a buffer, the range of the access, the
size of the buffer, and the statement that allocates the buffer.

Because the report shows the program expressions in the
form of source code, a developer can directly use the program
expressions for creating a patch for the buffer overflow. The
report also shows the scope of each program expression to
help the developer decide where in the code to apply the patch.
For example, the access range is denoted by iAddrLength
and valid in the scope of AddressFromAtPtr while the
buffer size is denoted by 256, an integer constant. A possible
scope to apply the patch is AddressFromAtPtr because

both the access range and buffer size are valid in this scope,
which are typically required to patch a buffer overflow. In
contrast, it will be more difficult to apply the patch to function
EmitRecipients because the access range is not valid in
this scope.

VII. LIMITATION

SPDetect avoids symbolic execution on error handling code
in order to focus on deep program paths because error handling
code is relatively simple and shallow and thus unlikely to
contain vulnerabilities. Nonetheless, SPDetect will miss vul-
nerabilities in error handling code.

Our prototype of SPDetect requires a user to manually
define the input preconditions. While the user can examine
the documentation on common input formats or program
manuals to create input preconditions, it is possible to aid the
user or automatically create input preconditions by analyzing
program code or learning from program behavior, such as
using clustering [42]. We plan to develop such technique as
our future work.

VIII. CONCLUSION

We present our approach for detecting vulnerabilities using
safety properties in order to provide semantic information
about detected vulnerabilities. The approach uses symbolic
execution to run target programs and detect vulnerabilities
by checking any violation of safe properties. When the
manifestation of a vulnerability violates a safety property,
the approach generates a exploit to trigger the vulnerability
and derives source code program expressions relevant to the
vulnerability from the violated safety property. To improve
the performance of our approach, we developed a technique
to terminate error path and two input preconditions to guide
the symbolic execution to focus on deep program paths. We
evaluated our approach on five popular programs and it detects
real world vulnerabilities effectively and efficiently.
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