
Short Paper: A Look at SmartPhone Permission Models

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill and David Lie
Dept. of Electrical and Computer Engineering

University of Toronto, Canada

ABSTRACT
Many smartphone operating systems implement strong sandboxing
for 3rd party application software. As part of this sandboxing, they
feature a permission system, which conveys to users what sensitive
resources an application will access and allows users to grant or
deny permission to access those resources. In this paper we survey
the permission systems of several popular smartphone operating
systems and taxonomize them by the amount of control they give
users, the amount of information they convey to users and the level
of interactivity they require from users. We discuss the problem of
permission overdeclaration and devise a set of goals that security
researchers should aim for, as well as propose directions through
which we hope the research community can attain those goals.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls, Information
flow controls

General Terms
Design, Human Factors, Security

Keywords
Smartphone, Permissions

1. INTRODUCTION
Smartphones have grown in popularity in recent years. Accord-

ing to an informal study, the number of smartphones increased
74.4% worldwide, with a total of 302.6 million units shipped in
20101. A large part of the popularity can be attributed to the ability
of smartphones to run 3rd party applications, which is a defining
feature of smartphones. These applications extend the utility of
smartphones making them essentially general computing devices

1http://technolog.msnbc.msn.com/_news/2011/
02/07/6005519-smart-phone-growth-explodes-
dumb-phones-not-so-much

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPSM’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1000-0/11/10 ...$10.00.

compared to their simpler “feature” phone and “dumb” phone pre-
decessors.

Having been developed in today’s security-sensitive environment,
the operating systems (OS) for smartphones incorporate stronger
sandboxing for 3rd party applications than previous consumer ori-
ented operating systems. These sandboxing systems isolate appli-
cations from each other and from the resources on the phone by
default. To access a sensitive resource on the phone, the sand-
box system implements a permission system that requires users to
grant permission, either explicitly or implicitly, to the application.
Some examples of sensitive resources may include personal con-
tacts, the user’s location or Internet access. While sandboxing is
a standard security mechanism to mitigate the threat of malicious
software, permission systems are a recent phenomenon that is be-
coming more and more widely used. Not only is some form of per-
mission system a feature of almost every smartphone OS, but it is
also used to constrain 3rd party applications in the Google Chrome
Browser and on Facebook’s application platform.

We define a permission system as having the first and possibly
the second of the following properties. First, a permission system
enables the user to define a per-application policy that constrains
what resources an application may access on their phone. Second,
a permission system communicates information to the user about
what resources an application accesses or might access in the fu-
ture. The second property can be thought of as a communication
channel for the application, and indirectly, the application devel-
oper, that conveys to the user how much the user is trusting the
application when they use it.

There has already been much work on analyzing the use of per-
missions in the Android OS, which is currently the most popular
smartphone OS [1, 2, 3, 4, 5, 8]. The existing literature points out
various problems with the permission system, such as the diffi-
culty of interpreting the meaning of the plethora of permissions
requested, as well as the lack of a way to convey that certain com-
binations of permissions are far more dangerous than the individual
permissions in isolation. Furthermore, there is a large amount of
anecdotal evidence, as well as a more recent academic study [3],
that indicates that permission systems suffer from the problem of
overdeclaration, where developers request more permissions than
what they need. There are two drawbacks to overdeclaring permis-
sions. First, overdeclaring breaks the principle of least privilege.
By granting more privileges to an application than it actually needs,
users open themselves up to more severe consequences should the
overprivileged application have an exploitable vulnerability. Sec-
ond, an application developer who overdeclares permissions may
lose potential users who balk at installing an application that is ask-
ing for too many permissions.

In this paper, we begin with a survey of permission systems

63

OS Initial Release Date # of permissions Control Information Interactivity
Android 2008/09/23 75a Medium High Low
Windows Phone 7 2010/10/11 15 Medium Medium Low
Apple iOS 2007/06/29 1 Low Low Low
WebOS 2009/06/09 1 Low Low Low
Blackberry OS 2006 Q3b 24 High High High
Maemo 2005/11/– 0 None None None

Table 1: Summary of smartphone OS permission models.
aThis only includes permissions available to 3rd party applications. There are 137 total permissions.
bThis is the release date of the Blackberry 8100, which is the first Blackberry phone capable of running 3rd party applications.

across several popular smartphone OSs in Section 2 and then taxon-
omize and compare various permission systems. We then propose
a set of research goals for solving the overdeclaration problem in
Section 3 and conclude in Section 4.

2. SURVEY OF PERMISSION SYSTEMS
We examine the permission systems of several modern smart-

phone OSs. We focus on three properties of the systems:

• Control: This indicates how much control the permission
system gives the user over applications. An example of con-
trol is whether permissions can be individually enabled and
disabled.

• Information: We also categorize permission systems by how
much information they convey to the user. Permission sys-
tems can convey two types of information – what resources
(and thus permissions) the application developer believes their
application will access (a priori) and what resources the ap-
plication actually accesses at run time.

• Interactivity: Finally, we indicate how much of a burden the
permission system is on the user by indicating how much in-
teraction is required to use the system. Some permission sys-
tems require a lot of interaction because they prompt the user
frequently, while others take measures to reduce the amount
of interaction.

We summarize the results of our analysis in Table 1 and give
details of our analysis below.

Android: The Android permission system consists of four types
of permissions. Two of the permission types, Signature and Sys-
tem, are reserved for applications that have been signed with a
key available to the firmware developer or come installed by de-
fault on the firmware. These permissions are not available to 3rd
party applications. The other two types of permissions are Normal
and Dangerous. Normal permissions are automatically granted to
the application without user involvement and so the user does not
have a chance to deny these permissions before installation (though
she may always examine them and uninstall the application after-
wards). Dangerous permissions are presented in a prompt at instal-
lation time of the application. If the user proceeds with the instal-
lation, then the dangerous permissions are permanently granted to
the application. The developer must declare what permissions the
application needs in a file that is later included with the applica-
tion installation package. As of Android 2.3.3, there are currently
75 dangerous and normal permissions available to 3rd party devel-
opers, making Android the most complicated permission system.
While Android has many individual permissions compared to other

OSs, users may only grant all requested permissions or deny them
all by not installing the application. As a result, we feel it only
gives a medium level of control to users. Users are given informa-
tion about what permissions the developer believes her application
needs, but not about what permissions the application actually uses.
However, because of the large number of permissions, we feel it
still conveys a high amount of information to users. We note that it
is debatable whether this form of additional information is actually
useful or more confusing for the user. Finally, users only interact
with the permission system when they install applications and even
then, only need to select between proceeding with the installation
or cancelling it, making the level of interaction for Android low.

Windows Phone 7: The permission system in Microsoft’s Win-
dows Phone 7 OS bears many similarities to that of Android. Per-
missions are called capabilities in Windows Phone 7. One differ-
ence is that instead of the 75 permissions available to 3rd party
applications in Android, Windows Phone 7 only provides 15 capa-
bilities for developers to choose from. In addition, the Windows
Phone 7 development environment provides a tool, called the “Ca-
pability Detection Tool”, which tries to automatically detect which
capabilities an application needs through static analysis of the ap-
plication code. Users are informed of the capabilities an application
is requesting from the application page on the market, but are not
prompted again at installation time, except for legal disclaimers.
Finally, the user is informed at application run time the first time the
application requests the user’s location. As in Android, users may
not provide a subset of requested capabilities, but may only grant
them wholesale or deny them all by not installing the application.
Because of the strong similarities, we rate Windows Phone 7 the
same as Android in control and interactivity, but give it a medium
level of information because of the coarser permission categories.

iOS: Apple’s iOS, which runs on the iPhone and iPad, does not
have as comprehensive a permission system as Android or Win-
dows Phone 7. Much of the security against malicious applications
relies on manual inspection that is done by the Apple App Store.
The viability of this manual process has been cause for concern [7].
iOS has no explicit permission interface. The first time an applica-
tion attempts to access the user’s location, the user is presented with
a prompt asking if they will allow it. After that, a user must actively
navigate to a menu in the iPhone settings that displays which appli-
cations have accessed the location resource in the last 24 hours. The
same screen also allows a user to revoke location permission from
an application. As a result, we rate iOS as low in all categories.

WebOS: HP’s WebOS employs a simple permission model. The
platform provides only 1 permission to third party application de-
velopers. When an application first accesses another application’s
media data, the user is prompted to grant a read-only permission.
WebOS also implements protection of sensitive resources by divid-

64

ing its API into a public API and a system API. However, users
do not have the ability to designate which applications may ac-
cess which API. Instead, Only applications from the com.palm.*
domain can use the system API, while third party applications are
limited to the restrictive public API. The WebOS security system
is very similar to iOS as they both provide very few permissions
and require runtime interaction from users. Furthermore they both
rely on an official vetting process as a measure against malicious
applications. Therefore, we give WebOS the same ratings as iOS.

Blackberry OS: Research in Motion’s Blackberry OS (version
6) contains 24 permissions available to 3rd party applications. How-
ever, rather than requesting the permissions up front, users have a
default set of permissions, which are automatically granted to each
application. At any time, the user may revise these permissions to
be more strict or more liberal. If an application tries to perform
an action for which they do not have the required permission, the
user is given a prompt. The user may permanently allow, perma-
nently deny or grant the permission for one time and thus continue
to receive prompts. However, we note that applications are gener-
ally not written to function with a partial set of permissions. As a
result, in practice, the Blackberry OS’s ability to partially grant per-
missions is effectively all or nothing in many cases, since denying
even a single permission causes some applications to malfunction.
The Blackberry OS does not provide a channel for developers to
communicate their intended use of permissions up front, though
developers may choose to include this information in their docu-
mentation or as part of the application startup. However, the inter-
active prompts give users a great deal of information about what
permissions an application is actually using. Because of the fine-
grain control and information given to users and the high level of
interactivity caused by the prompts, we rate the Blackberry OS high
in all categories, though we re-emphasize that it is likely that these
advantages are not likely realizable in practice due to the way ap-
plications are written.

Maemo: Nokia’s Maemo operating system is based on Linux
and is the successor to the Symbian operating system. Maemo is
essentially a phone-specific distribution of Linux and implements
the same security model as Linux. All applications execute as the
same Linux UID and thus there is no isolation between applica-
tions. Maemo does not implement a permission system – it neither
provides the user the ability to constrain applications, nor does it
provide a way for the user to know what operations an application
is performing on their phone.

Discussion: The choices in permission system design illustrate
the classic tension between providing fine-grain control and infor-
mation to the user, and reducing the effort on the part of the user
to maintain security. Over time, smartphone OS architects have re-
fined their permission models to improve this trade-off. Older OSs,
such as Maemo, iOS and Blackberry OS sit at opposite ands of
this spectrum, either providing a lot of information and control at
high cost in user effort, or not providing any at all. In contrast, the
two most recent OSs, Android and Windows Phone 7 have nearly
identical permission systems that give users some control and in-
formation, but still offer a low level of interactivity by moving the
granting of permissions to install time. Unfortunately, moving the
permission granting to install time means that users may be asked to
grant permissions that the application never needs or uses, resulting
in the problem of permission overdeclaration. Interestingly, there
seems to be demand for even more control without increasing the
level of interaction by some users. Custom modifications of the
open source Android OS enable users to grant or deny individual
permissions for an application [9,11]. It remains to be seen whether
this capability will be useful in practice, since some Android appli-

Android Version Release Date Permissions Changed
1.0 2008/09/23 -
1.1 2009/02/09 2
1.5 2009/04/30 5
1.6 2009/09/15 9
2.0 2009/10/26 4
2.0.1 2009/12/03 0
2.1 2010/01/12 1
2.2 2010/05/20 5
2.3 2010/12/06 6

Table 2: Android releases and permission churn. A Permission
Change represents a permission that has been added, removed
or deprecated.

cations will not function properly with only partial permissions (as
demonstrated by AppFence [6]), and whether these enhancements
will be adopted by the official Android OS.

3. RESEARCH AGENDA

3.1 Problem description
Permission systems such as Android and Windows Phone 7, whe-

re the developer must declare what permissions their application
needs up front, suffer from the problem of permission overdeclarati-
on. The main goal of the developer is to get their application work-
ing so it can be placed on the market as soon as possible, thus en-
abling users to download and start using it. On one hand, over-
declaring permissions instead of underdeclaring leads to a higher
probability that their application will work and thus reduces the ef-
fort needed to develop an application. On the other hand, there are
claims that overdeclaration causes some users to reject an applica-
tion 2.

Since there are good reasons for a developer to overdeclare and
not to overdeclare, we may ask why are developers choosing to
overdeclare? If we examine the rate of Android OS releases, tab-
ulated on Table 2, we see that there has been an Android release
every 3 months on average with 4 permissions changing on aver-
age (either added, removed or deprecated) with each release. Thus,
one might conclude the tendency towards overdeclaration is be-
cause permissions are constantly changing underneath the develop-
ers. However, this is not the case. If we examine the permissions
that are most overdeclared in the study by Felt et al. [3], we see that
there is nearly no overlap between the overdeclared permissions
and the removed or deprecated permissions. As a result, the high
rate of churn does not lead directly to overdeclaration.

If we dig a bit deeper, a commonly cited problem with Android
permissions is the poor accuracy of the documentation that maps
the permissions required for different types of application actions.
Given the rapid rate of Android releases and churn in the permis-
sion system, it is not a surprise that Android developers have ne-
glected to produce complete and accurate documentation govern-
ing the permission system. On various Android development news-
groups, developers often express frustration at bugs whose under-
lying cause turn out to be inadequate permissions – the lack of
documentation greatly increases the effort to determine what per-
missions their application needs. Unfortunately, there is very little

2Facebook explicitly warns developers to not overdeclare stating
that applications with fewer permissions are installed by more
users – see http://developers.facebook.com/docs/
guides/canvas/#auth

65

data on how the number of requested permissions factors into a
user’s decision to install or not install an application. As a result,
developers perceive little benefit from deriving the precise set of
permissions required. Thus, the benefits of overdeclaring are clear
to the application developer (their application will work), while the
drawbacks are unclear.

3.2 Goals
The underlying cause of overdeclaration is due to the imbalance

between the difficulty of correctly declaring permissions and the
unclear benefits of doing so. While this imbalance currently favors
overdeclaring for the developer, this is not a situation that benefits
the end users. Overdeclaration gives applications unneeded privi-
leges, which puts the user at greater risk should an application be
compromised. As a result, stopping overdeclaration is a worthwhile
research goal.

To stop overdeclaration, the balance between the cost of cor-
rectly declaring permissions and the benefits of doing so must be
reversed, so that developers are motivated to correctly declare per-
missions. Thus we define several research goals to solve the over-
declaration problem.

Lower the costs of determining the correct set of permis-
sions. The effort to determine the correct set of permissions should
be made as low as possible – ideally zero. This can be accom-
plished with a tool that automatically determines what permissions
are needed by an application. Microsoft already includes a tool that
tries to detect what permissions an application needs. In addition,
Felt et al. [3] present a tool, called StowAway, that can extrapo-
late the needed permissions of an application from the application
binary. However, both tools currently cannot extract required per-
missions accurately for reasons we discuss in Section 3.3.

Make the costs of overdeclaration explicit to developers. Even
if the effort to correctly declare permissions is reduced, developers
must still weigh the effort that must be invested versus other devel-
opment activities, such as adding new features or fixing bugs that
users are complaining about. The problem is that overdeclaration
is not a “bug” that users generally complain about, so developers
have little motivation to fix the problem. The role that permissions
play in a user’s decision to install an application can be studied
and quantified so that developers can fully weigh the benefits of
correctly declaring permissions against the costs of not doing so.
For example, if developers were made aware that by removing a
certain permission, they may increase their user base by some per-
centage, this may motivate them to see if that permission is actually
required.

Make developers aware which components in their applica-
tion are using which permissions. Once the above are achieved,
then developers can start making informed decisions about whether
a particular feature increases the number of users because of its
desirability, or drives away users because of the permissions it re-
quires. Not all permissions are equal and some permissions (such
as Internet access or location) are likely to raise the ire of some
users more than others. Being able to tie permission use to spe-
cific components and features would be a final goal for research on
permissions in smartphone OSs.

3.3 Proposed Solution
In the previous section, we proposed the creation of a tool that

can automatically determine the permissions an application needs.
To reliably do this, one must extract a mapping between the API
calls an application may exercise and the permissions the applica-
tion needs to use those APIs. In StowAway, the mapping between
API calls and permissions is extracted using fuzz testing of the API

interface (and made available on their web page). However, this
suffers from difficulty in getting complete coverage, as well as dif-
ficulty in getting realistic arguments from the fuzz testing tool for
the API calls. The Microsoft Capability Detection tool relies on
a set of rules, likely derived from the smartphone OS developers
themselves. While this is likely to be more reliable, it requires ef-
fort on the developer’s part to keep it up to date, and thus is just
another instance of the problem of maintaining accurate documen-
tation of an OS that is undergoing rapid development. Ideally, an
automated method could be devised that could automatically ex-
tract the mapping by performing static analysis on the source code
of the OS.

We are currently exploring the use of static analysis on the source
code of the Android OS to extract the mapping between API calls
and permissions. The goal is to detect all program flows from API
calls to permission checks. While this has the potential to be more
complete as compared to dynamic methods such as fuzz testing,
the main limitation with any static analysis is that it is difficult to
be made scalable. In the case of Android, this is a particularly chal-
lenging problem. The Android code base includes approximately
12 million lines of source code. Furthermore, the path between an
API call and a permission check may traverse several processes, as
well as different languages, making traditional program flow analy-
ses that normally only handle one language and a single name space
inadequate.

Our analysis shows that permission checks spread between Java,
C/C++ source files and a few permissions are enforced at the linux
kernel level. Since the majority of permissions are checked in Java,
we use Soot [10] to perform static analysis on the Java bytecode of
the framework. To address scalability issues, we perform a flow-
insensitive call-graph analysis to find paths between API calls and
permission checks. An issue associated with reachability analysis
on a flow-insensitive graph is that it sometimes produce overly con-
servative results. This is especially problematic for functions such
as message handlers that have many branches to other subroutines.
We identify these functions and perform a flow-sensitive analysis
to avoid loss of precision in our mapping.

RPC is another challenge because the control flow is not explicit
in the source code. RPC in Android is compiled from Android In-
terface Definition Language (AIDL) files. The generated interface
includes a stub class which gets extended to implement the RPC
methods and a proxy class which handles marshalling and unmar-
shalling of data as well as communication between processes. We
use this information to identify the RPC callers and callees in the
framework. To incorporate RPC into our analysis, the call-graph is
modified by replacing the subgraph between each caller and callee
pairs with direct edges. Subsequently, we can perform the same
reachability analysis on the modified call-graph to extract an API
calls to permission mapping with RPC taken into account.

An Android application is built from four types of components:
activities, services, content providers and broadcast receivers. In
addition to protecting regular API calls, permissions are sometimes
used to provide access control to these application components.
Content providers manage shared application databases. To access
a specific database, applications must provide a URI to identify the
data requested. Read or write permissions for the providers are de-
clared in manifest files which are parsed to extract a URI to permis-
sion mapping. Intent objects are used to activate activities, services
and broadcast receivers. A permission may be required to launch
an activity or a service, to send intents or to receive intents at a re-
ceiver. We aim to extract an intent to permission mapping from the
framework to complete our set of permission mappings.

We plan to compare our results with the fuzz testing results in

66

StowAway [3]. In addition, we also plan to verify our findings
with an application fuzz tester. Our goal is to produce a reliable
mapping that is comparable to or better than a human developer
and eliminate any manual effort from the developers to produce an
accurate set of permissions required for their applications.

4. CONCLUSION
We conclude that the trade-off between the obvious benefits of

overdeclaring to save time and the less apparent drawback of losing
potential users, currently seems to favor overdeclaring for develop-
ers. On the other hand, for users, overdeclaring is harmful in that
it runs counter to the security principle of least privilege. As a re-
sult, we feel that the best way to solve this problem is to produce
tools that reduce the effort required of developers to detect what
permissions are needed, and a secondary way is to feedback to de-
velopers which permissions are most worrisome to potential users.
For completeness, such a tool would have to rely on static analy-
sis, but static analysis of a large operating system that spans dif-
ferent components and languages remains challenging. However,
despite being developed at different times and by different people,
the permission systems of all smartphone OSs bear many similari-
ties. Thus, we believe that a domain-specific approach may be key
to solving the overdeclaration problem.

Acknowledgements
The authors would like to thank the anonymous reviewers for their
helpful comments. Kathy is supported by an OGS scholarship and
Phillipa is supported by an NSERC scholarship. The work in this
paper was also supported by the NSERC ISSNet Strategic Network,
and an NSERC Engage Grant.

5. REFERENCES
[1] D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji. A

methodology for empirical analysis of permission-based
security models and its application to Android. In
Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS 2010), Oct. 2010.

[2] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In Proceedings of the
16th ACM Conference on Computer and Communications
Security (CCS 2009), Nov. 2009.

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications
Security (CCS 2011), Oct. 2011.

[4] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness
of application permissions. In Proceedings of the 2nd
USENIX Conference on Web Application Development, June
2011.

[5] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In
Proceedings of the 20th USENIX Security Symposium, Aug.
2011.

[6] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
“These aren’t the droids you’re looking for”: Retrofitting
Android to protect data from imperious applications. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS 2011), Oct. 2011.

[7] K. Noyes. Why Android app security is better than for the
iPhone. PC World Magazine, 2011.
http://www.pcworld.com/businesscenter/
article/202758/why_android_app_security_
is_better_than_for_the_iphone.html (accessed
August 19, 2011).

[8] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically rich application-centric security in Android. In
Proceedings of the 25nd Annual Computer Security
Applications Conference (ACSAC), Dec. 2009.

[9] senk9. How to control Android app permissions
(Root/CM7). http:
//senk9.wordpress.com/2011/06/19/how-to-
control-android-app-permissions-rootcm7/
(accessed August 19, 2011).

[10] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization
framework. In Proceedings of the 1999 conference of the
Centre for Advanced Studies on Collaborative research,
CASCON ’99, page 13. IBM Press, 1999.

[11] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on Android).
In Proceedings of the 4th International Conference on Trust
and Trustworthy Computing (TRUST 2011), June 2011.

67

